В А Сропеіту Iooz , blitqA В.А. Сропецъ 8 ₽ Optimization problems (vs. decision problems): How to develop: a Dynamic Programming algorithm Dynamic Programming: Typical use Construct optimal solution from computed information Compute value of optimal solution in a bottom-up fashion Recursively define value of optimal solution Characterize structure of optimal solution There could <u>several</u> optimal solutions Optimization: find solution that has best value Each solution has a value (e.g., price, preference) A problem has many solutions Goal: find one optimal solution (maximization/minimization)

Dynamic Programming (I)

Textbook, Chapter 16, Sections 16.1

CSCE310: Data Structures and Algorithms

www.cse.unl.edu/~choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)

Ferguson Hall, Room 104

choueiry@cse.unl.edu, Tel: (402)472-5444

Dynamic Programming
solves problems by combining solutions to subproblems

Divide-&-conquer:

partition problems into independent subproblems
solve subproblem recursively
combine solutions to solve initial problem

Dynamic Prog.:

subproblems are not independent, share subsubproblems
repeatedly

Dynamic Prog. would solve common subsubproblems
repeatedly

Dynamic Prog. would solve each subsubproblem once and save
answer in a table — savings

1002 , b li1qA

solution

Step 4 can be omitted if you are looking only for value of optimal

```
В.А. Сропецъ
1002 , b li1qA
                                                                                                                                                                                                                                                                                                                                                                                                В А Сропеіту
                                                                                                                                                                                                                                  8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            7
                                                                                                                                                                                      How many scalar multiplications:
                                                                                                                                                                                                                                                                                                                                  Consider: \langle A_1, A_2, A_3 \rangle, with
                                                                                                                                                                                                                                                                                                                                                                      Matrix multiplication: Example
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Product: AB (p \times r) requires pqr scalar multiplications
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Matrices: A(p \times q), B(q \times r)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Matrix multiplication: number of scalar multiplications
                                                                                                                               in (A_1(A_2A_3)):.....
                                                                                                                                                          in ((A_1A_2)A_3):.....
                                                                                                                                                                                                                                                                                                       dimensions of A_1 are 10 \times 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Matrix-Multiply(A, B)
                                                                                                                                                                                                                                                   dimensions of A_3 are 5 \times 50
                                                                                                                                                                                                                                                                             dimensions of A_2 are 100 \times 5
                                                                  Sequence matters
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               if columns[A] \neq rows[B]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             then error "incompatible dimensions"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          else for i \leftarrow 1 to rows[A]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   do for j \leftarrow 1 to columns[B]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             do C[i,j] \leftarrow 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        for k \leftarrow 1 to columns[A]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  do C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]
```

Outline

В.А. Сропецъ

- $\bullet \ \sqrt{\ \rm Dynamic\ programming\ for\ Matrix\ multiplication}$ Goal: minimize number of scalar multiplications
- $\sqrt{2}$ key characteristics an optimization problem must satisfy to be solvable with Dynamic Programming

ç

- ? How to find longest common subsequence of 2 sequences
- ullet X Use of Dynamic Progr. to find an optimal triangulation of a convex polygon (fundamental in Computational Geometry)

Matrix-Chain multiplication

В.А. Сропеіту

Compute: their product $A_1 A_2 \dots A_n$ **Given:** a sequence $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices

 H_{ow} ?

• One way:

9

- Compute A_1A_2 , then $(A_1A_2)A_3$, then $(((A_1A_2)A_3)A_4)$, etc.
- Another way:

Compute A_1A_2 , and A_3A_4 , then $(A_1A_2)(A_3A_4)$, etc.

- ... 5 distinct ways, full parenthesizations (FP) full parenthesization: single matrix or product of two FP
- All equivalent? Not in terms of running time

products with parenthesis

B. Y. Choueiry

 $MCM\ Problem:\ Brute-force\ solution\ no\ good: -($

Check applicability of DP:

π

Step 1: Characterize structure of an optimal solution Check whether an optimal solution contains optimal solutions

Step 2: ...

to subproblems

I002 , b lirqA

MCM Problem: optimal solution

В.А. Сропеіту

Notation: result of $A_i A_{i+1} \dots A_j$ is matrix $A_{i...j}$

An optimal solution:

• splits $\langle A_1, A_2, \dots, A_n \rangle$ in

15

 $\langle A_1, \dots, A_k \rangle$ and $\langle A_{k+1}, \dots, A_n \rangle$ with $1 \leq k < n$

• parenthesize each of $\langle A_1,\dots,A_k\rangle$ and $\langle A_{k+1},\dots,A_n\rangle$ (by splitting them somehow) to compute the 2 portions $A_{1...k}$ and $A_{k+1...n}$ and

 Compute product by multiplying the two matrices A_{1...k} and A_{k+1...n}

I002 , b litqA

6

Matrix-Chain Multiplication Problem (MCM)

В.А. Сропецъ

Given: a sequence $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices each A_i has dimensions $p_{i-1} \times p_i$

Task: Fully parenthesize their product $A_1 A_2 \dots A_n$

Objective: while minimizing the number of scalar multiplications

1002 , h li1qA

B. A. Choueiry

MCM Problem: Brute-force solution

- Compute all possible full parenthesizations (exhaustive search)
- Compute number of scalar multiplications for each
- Choose (any) one with the minimum such value

il

10

Is this a feasible solution?

Number of possible full parenthesizations (by solving recurrence)

$$P(n) = \frac{1}{n} \begin{pmatrix} 2(n-1) \\ n-1 \end{pmatrix} = \Omega(4^n/n^{3/2})$$

Exponential in n, thus avoid!

200

В.А. Сропецъ

Dynamic Programming: structure of optimal solution (II)

To compute an optimal solution of a problem of size k

- subsolutions of subproblems of size k-1Compute all solutions to problem using the optimal
- Determine the optimum

15

Key question: define value of optimal solution

Step 2: Define value of an optimal solution recursively in terms of the optimal solutions to subproblems

1002 , b li1qA

MCM Problem: A recursive solution (I)

B.Y. Choueiry

- Consider the chain: $\langle A_1, A_2, \dots, A_n \rangle$
- Consider a subproblem: $A_i A_{i+1} \dots A_j$ with $1 \le i \le j \le n$
- Let m[i, j] be cost of computing $A_{i...j}$

Task: define m[i,j] recursively

 $\Rightarrow m[i, i] = 0 \text{ for } i = 1, 2, \dots, m$ $i = j, A_{i...i} = A_i$ no scalar multiplication required

91

i < j, exploit structure of optimal solution (Step 1)

Assume A_i, \ldots, A_j is split in A_i, \ldots, A_k and A_{k+1}, \ldots, A_j with

Then, $m[i,j] = \min$ cost of computing $A_{i...k} + \text{that of } A_{k+1...j} +$ cost of multiplying $A_{i...k}$ and $A_{k+1...j}$

So, $m[i, j] = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j$ with

1002 , b li1qA

Check m[i,j] for all k ((j-i) possibilities, choose the minimum

В.А. Сропецъ

MCM Problem: structure of optimal solution

and $\langle A_{k+1}, \dots, A_n \rangle$ with $1 \le k < n$ An optimal solution by splitting $\langle A_1, A_2, \dots, A_n \rangle$ in $\langle A_1, \dots, A_k \rangle$

Observation: parenthesization of each portion must be optimal

Justification: If there were a better FP $A_1A_2 \dots A_k$, choosing it would yield a better FP of $\langle A_1, A_2, \dots, A_n \rangle$, which is an optimum. Contradiction

13

Conclusion: optimal solution contains within it optimal subsolutions

Retain: First hallmark of applicability of Dynamic Prog \rightarrow optimal substructure within optimal solution

1002 , Pli1qA

В А Сропеіту

Dynamic Programming: structure of optimal solution (I)

- To compute an optimal solution, compute all optimal subsolutions
- Start with all optimal subsolutions of size 1

ħΙ

- Compute all optimal subsolutions of size 2 using the optimal subsolutions of size 1
- Repeat until getting an optimal subsolution of size n, which is an optimal solution

1002 , Pli1qA

В.А. Сропецъ

MCM Problem: optimal solution

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \} \text{ if } i < j \end{cases}$$

Two alternatives:

61

- 1. Compute m[1, n] with a recursive algorithm (i.e., top-down)

 \rightarrow Recursion tree

2. Compute m[i,j] in a bottom-up fashion

1002 , b li1qA

MCM Problem: recursion tree, example: m[1, 4]

Recursion algorithms may encounter each subproblem many times in different branches. Its complexity is:

50

2..2

$$T(n) \quad \geq \quad 1 + \sum_{k=1}^{n-1} (T(k) + T(n-k) + 1) \text{ for } n > 1$$

$$T(n) \ge 1 + \sum_{k=0}^{n-1} (T(k) + T(n-k) + 1) \text{ for } n > 1$$

Solution: $T(n) \ge 2^{n-1} = \Omega(2^n)$, using substitution method

Exponential:-(

Optimized thanks to $\underline{\text{memoization}} :=$

В А Сропеіту

MCM Problem: A recursive solution (II)

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \} & \text{if } i < j \end{cases}$$

41

Let s[i,j] be the value of k corresponding to the minimum

cost m[i,j] of computing $A_iA_{i+1}...A_j$ is optimal (i.e., minimal) Now, s[i,j] tells us where to split problem $A_iA_{i+1}\dots A_j$ so that the

1002 , b li1qA

MCM Problem: number of possible subproblems

В А Сропеіту

Each $A_i A_{i+1} \dots A_j$ is possible subproblem

How many subproblems, knowing $1 \le i \le j \le n$?

1. for
$$i < j$$
, $\binom{n}{2} = \frac{n(n-1)}{2}$ possibilities and $i = j$, n possibilities

Thus $\frac{n(n+1)}{2} = \Theta(n^2)$ subproblems

81

Alternatively, $\sum_{x=1}^{n} x = \frac{n(n+1)}{2} = \Theta(n^2)$

We have to compute $\Theta(n^2)$ in total

```
B.Y. Choueiry
1002 , b li1qA
                                                                74
                                                                                    s das m and s 13
      \begin{aligned} & \text{do } q \leftarrow m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \\ & \text{do } q < m[i,j] \\ & \text{if } q < m[i,j] \\ & \text{then } m[i,j] \leftarrow q \\ & \text{s}[i,j] \leftarrow k \end{aligned}
                                                                                                                   15
                                                                                                                   ΙI
                                                                                                                   01
6
8
                                                     1-l of l\to\lambda fol
                                                              \infty \to [f'i] m
                                                             I - I + I \rightarrow I op
                                                            I + i - n of I \rightarrow i for ob
                                                                                      u of L \to l lof
                                                                             0 \rightarrow [i,i]m ob
                                                                                1 - [q]hignsl \rightarrow n
n \text{ of } 1 \rightarrow i \text{ fol}
                                                                                                                   7
                                                                        MATRIX-CHAIN-ORDER(p)
                      MCM Problem: bottom-up algorithm
```

```
1002 , b li1qA
                                                                                                                                                                                                                                                                                                                                                                 23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Dimensions of A_i are p_{i-1}p_i, for i=1,\ldots,n
                                                                                                                                                                         Use auxiliary table s[1...n, 1...n] to record index k that
                                                                                                                                                                                                                                           costs). Example: m[6,6]
                                                                                                                                                                                                                                                                                  Use auxiliary table m[1...n, 1...n] for storing m[i, j] (i.e.,
                                                                                                                                                                                                                                                                                                                                              5 \times 10(A_4), 10 \times 20 (A_5), 20 \times 25 (A_6)
                                                                                                                                                                                                                                                                                                                                                                                          of dimensions 30 \times 35 (A_1), 35 \times 15 (A_2), 15 \times 5 (A_3),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Input: \langle p_0, p_1, p_2, \dots, p_n \rangle of length n+1
                                                                                                                                achieved optimal cost in computing m[i,j]
                                                                                                                                                                                                                                                                                                                                                                                                                                      Example: \langle 30, 35, 15, 5, 10, 20, 25 \rangle is the sequence of 6 matrices
                                              Example: s[6,6]
                                                                                          for constructing optimal solution, in Step 4
```

В.А. Сропецъ

В.А. Сропецъ

Step 3: Compute value of an optimal solution bottom-up

Problem: alternative to recursive algorithm

Memoization

The basic idea of memo functions is to accumulate a saving the results of computation. A technique of Computer Science to speed up programs by

solving the problem from scratch called, it first check the database and see if it can avoid database of input/output pairs; when the function is

51

Idapted from:

Artificial Intelligence: A Modern Approach Russel & Norvig

I 002 , h ling A

MCM Problem: recursion algorithm

В.А. Сропецъ

```
Recursive-Matrix-Chain(p, i, j)
1 if i = j
```

8 7 6 $m[i,j] \leftarrow \infty$ for $k \leftarrow i$ to j-1 $\begin{aligned} & \text{then } m[i,j] \leftarrow q \\ & \text{return } m[i,j] \end{aligned}$ then return 0 do $q \leftarrow \text{Recursive-Matrix-Chain}(p, i, k)$ if q < m[i, j]+ Recursive-Matrix-Chain $(p, k+1, j) + p_{i-1}p_kp_j$

55

Retain: Second hallmark of applicability of Dynamic Progightarrow overlapping subproblems in recursive (top-down) algorithm

I 002 , h ling A

```
Line 9: computes m[i,j] using m[i,j] = \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \} For instance, for m[2,5], l=4, 2 \leq k < 5 we compute the m[2,2] + m[3,5] + p_1p_2p_5 minimum of: m[2,3] + m[4,5] + p_1p_3p_5 m[2,2], m[5,5] \ (=0) \text{ were computed when } l=1 m[2,3], m[4,5] \text{ were computed for } l=2 m[2,4], m[3,5] \text{ were computed for } l=3 \text{ So, for each } m[i,j], \text{ we need } m[i,k], m[k+1,j] \text{ that were computed at previous step.}
```

Line 12: Keeps track of k corresponding to minimum in s[i,j]For example, for s[2,5]=3 (useful for reconstructing solution)

This means: optimal parenthesization of $A_2A_3A_4A_5$ is $(A_2A_3A_4)A_5$ Time: Loops nested three deep $(l,i,k) \to O(n^3)$ (actually $\Theta(n^3)$)

Space: $\Theta(n^2)$ to store m[i,j] and s[i,j]

Conclusion: Matrix-Chain-Order is much more efficient than exponential-time brute-force solution (i.e., enumerating all possible FPs, computing their value, choosing the best one.)

1002 , b li1qA

B. A. Choueiry

MCM Problem: bottom-up algorithm (II)

Fills up m by solving the parenthesization problem on chains of increasing length:

• all chains of length l = 1, m[i, i],

 25

- all chains of length l = 2, m[i, i + 1],
- all chains of length l = 3, m[i, i + 2]
- all chains of length ...,
- all chains of length l = n, m[i, i + n 1].

Ioos , b litqA

MCM Problem: bottom-up algorithm (III)

В.А. Сропеіту

Lines 2-3: $m[i,i] \leftarrow 0$, chains of length 1

Line 4: l all chain lengths from 2 to n

Loop 4-12: 1. l=2, we compute m[i,i+1] for $1 \le i \le (n-1)$, that is, for n=6, m[1,2], m[2,3], m[3,4], m[4,5], m[5,6] ('second' diagonal)

2. l=3, we compute m[i,i+2] for $1 \leq i \leq (n-2),$ that is, m[1,3], m[2,4], m[3,5], m[4,6]

97

- 3. l=4, we compute m[i,i+3] for $1 \leq i \leq (n-3),$ that is, m[1,4], m[2,5], m[3,6]
- 4. l=5, we compute m[i,i+4] for $1\leq i\leq (n-4),$ that is, $m[1,5],\,m[2,6]$
- 5. l=6, we compute m[i,i+5] for $1\leq i\leq (n-5)$, that is m[1,6]

Ioo2 , b li1qA

```
B.Y. Choueiry
1002 , bling A
                                                                                                                                                  32
                                                                                                                                                Applicability (hallmarks)
                                                                                                                                                                                         Elements of Dynamic Programming
                                                                                                 Overlapping subproblems in recursive (top-down) algorithm
                                                                                                                         Optimal substructure within optimal solution
```

```
1002 , bling A
                                                                                            B. A. Choueiry
                                                      31
                                              ({}_{0}K({}_{0}A_{1}A_{1}))(({}_{0}A_{2}A_{1}){}_{1}A) smlutor
                                                               returns (A_4A_5)A_6
                 ^{6}A \text{ sruter } (9, 9 = 1 + [9, 4]s, 1, s, 1) \leftarrow X
                                                                     {}_{5}\!{\cal h}_{4}{\cal h}_{5} sпти {}_{5}
               A seturns A_5 , A , A , A , A , A , A , A , A , A
                     A = \{s, t, t, t, s, t\} 
                                                                        \vec{c}=\vec{i}\,, \vec{k}=\vec{i}
                                             (\mathbf{d} = [\mathbf{d}, \mathbf{b}] \mathbf{s}, \mathbf{b}, \mathbf{1}, \mathbf{e}, \mathbf{h}) \leftarrow X
                                                                           0 = i, i = i
                                                 (0, 1 = 1 + [0, 1]s, s, h) \leftarrow Y
                                                               (\epsilon h_2 h)_1 h satutər
                                                                     \epsilon A_{2}A sптиђет
                  \epsilon A satural (\epsilon, \epsilon = 1 + [\epsilon, 2] s, \epsilon, A) \leftarrow X
                         sA sırıtə<br/>л(\mathbf{S} = [\mathbf{S}, \mathbf{S}]s, \mathbf{S}, \mathbf{S}, \mathbf{A}) \leftarrow X
                                                                        \mathcal{E} = \mathcal{V}, \mathcal{L} = \mathcal{I}
                                         (\mathfrak{E},\mathfrak{L}=\mathfrak{l}+[\mathfrak{E},\mathfrak{l}]s,s,A)\leftarrow Y
                            {}_{1}A smutər (1 = [5,1]s,1,s,h) ← X
                                                                           \xi=\mathfrak{f},\mathfrak{l}=\mathfrak{i}
                                                        (\mathcal{E} = [\operatorname{3,1}]\operatorname{s,1,s,h}) \leftarrow X
                                                                                   0 = i, 1 = i
                                         {\tt Matrix-Chain-Multiply}(A,s,1,6)
  Constructing optimal solution: Example
```

В.А. Сропецъ I 002 , h ling A 30 First, call Matrix-Chain-Multiply (A, s, 1, n)MCM: Constructing optimal solution 1 if j > iMatrix-Chain-Multiply(A,s,i,j)then $X \leftarrow \text{Matrix-Chain-Multiply}(A, s, i, s[i, j])$ $Y \leftarrow \text{Matrix-Chain-Multiply}(A, s, s[i, j] + 1, j)$ return Matrix-Multiply(X, Y)else return A_i

Earlier matrix multiplications can be computed recursively MCM is optimal for $A_{1...s[1,n]}A_{s[1,n]+1...n}$ Each s[i,j] records k for optimal parenthesization of $A_iA_{i+1}\dots A_j$ $\rightarrow k \text{ splits } A_i A_k \text{ into } A_{k+1} \dots A_j$

Optimal solution is constructed with Matrix-Chain-Multiply

MCM: Constructing optimal solution

does not directly show multiplication order Matrix-Chain-Order determines value of optimal solution but not

Step 4: constructs optimal solution using s[1...n, 1...n]

67

Summary

MCM problem solved either by:

• a bottom-up dynamic programming algorithm

• a top-down (recursive) memorized algorithm

in $O(n^3)$, where n is the number of matrices in chain

Optimal substructure

B. A. Choueiry

- a problem exhibits optimal substructure when optimal solution contains within it optimal solutions to subproblems
- Strategy: assume there is a better solution to a subproblem and show this assumption contradicts optimality of the solution to original problem

33

Choice of subproblem remains an art and determines performance of the algorithm

1002 ,b lingA

B. A. Choueiry

Overlapping subproblems

Space of subproblems must be small

₽₹

- \bullet Better reuse few subproblems then generate and solve more subproblems
- Typically, total number of distinct subproblems polynomial in size of input

1002 , b litqA