Auenoyp “X'g

1002 ‘% 1Ay

-

Dynamic Pregramming: Typical use

Optimization problems (vs. decision problems):
e A problem has many solutions
e Each solution has a value (e.g., price, preference)

e Optimization: find solution that has best value

(maximization/minimization)

e There could several optimal solutions

Goal: find one optimal solution

Auenoyp “X'g

1002 ‘% 1Ay

Dynamic Programming (I)

Textbook, Chapter 16, Sections 16.1

CSCE310: Data Structures and Algorithms
www .cse.unl.edu/"choueiry/S01-310/

Berthe Y. Choueiry (Shu-we-ri)
Ferguson Hall, Room 104
choueiry@cse.unl.edu, Tel: (402)472-5444

N

Axremoyp “X'g

100% ‘¥ 1ady

-

How to develep: a Dynamic Programming algorithm

1. Characterize structure of optimal solution
2. Recursively define value of optimal solution
3. Compute value of optimal solution in a bottom-up fashion

4. Construct optimal solution from computed information

Step 4 can be omitted if you are looking only for value of optimal

solution

-

/

ALaenoyp “x'g

100z ‘% 1ady

-

Dynamic Programming
solves problems by combining solutions to subproblems

Divide-&-conquer:
partition problems into independent subproblems
solve subproblem recursively

combine solutions to solve initial problem

Dynamic Prog.:
subproblems are not independent, share subsubproblems

Divide-&-conquer would solve common subsubproblems
repeatedly

Dynamic Prog. would solve each subsubproblem once and save

answer in a table — savings

-

/

Auenoyp “X'€

1002 ‘% 1Ay

-

Matrix multiplication: number of scalar multiplications

MATRIX-MULTIPLY(A, B)

1 if columns[A] # rows[B]

2 then error “incompatible dimensions”
3 else for i — 1 to rows[A]

4 do for j — 1 to columns{B]

5 do C[,j1<0

6 for k — 1 to columns{A]

7 do C[i, jl1— Cli, jl + Ali, k]- B[k, j]
8 return C

Matrices: A (p x q), B (g x r)
Product: AB (p X r) requires pqr scalar multiplications

N

Auenoyp “X'€

1002 ‘% 1Ay

4 N

Qutline

e / Dynamic programming for Matrix multiplication

Goal: minimize number of scalar multiplications

e /2 key characteristics an optimization problem must satisfy to

be solvable with Dynamic Programming
e 7 How to find longest common subsequence of 2 sequences

e x Use of Dynamic Progr. to find an optimal triangulation of a
convex polygon (fundamental in Computational Geometry)

. /

Auenoyp “X'g

100% ‘¥ 1dy

-

Matrix multiplication: Example

Consider: (Aj, As, A3), with
dimensions of Ay are 10 x 100
dimensions of Ay are 100 x 5
dimensions of A3 are 5 x 50

How many scalar multiplications:

— Sequence matters

-

Laenoyp “x'g

100z ‘% 1ady

4 N

Matrix-Chain multiplication

Given: a sequence (A, Ay, ..., A,) of n matrices
Compute: their product 4145 ... A,

How?

e One way:
Compute A; As, then (A1 A45)As, then (((A142)A3)Ay), ete.

e Another way:
OOE@EH@ \:\wwq and \wwﬁf then A\»H\wwx&w\rﬁvq ete.

e ... 5 distinct ways, full parenthesizations (FP)

full parenthesization: single matrix or product of two FP

products with parenthesis

All equivalent? Not in terms of running time

\ /

ALienoyp "x°g

1T

100z ‘% mady

4 N

MCM Problem: Brute-force solution no good :—(

Check applicability of DP:

Step 1: Characterize structure of an optimal solution
Check whether an optimal solution contains optimal solutions
to subproblems

Step 2:

. /

1 Auenoyp “X'g

100z ‘% 1ady

a4 N

MCM Problem: optimal solution
Notation: result of A;A;y1...A; is matrix 4;.

An optimal solution:

o splits (A1, As,..., A,) in
(A1,...,Ag) and (Agt1,...,4,) with1 <k <n
e parenthesize each of (A4;,...,Ax) and (Agyq,...,A,) (by

splitting them somehow) to compute the 2 portions A;_j and
Ag41..n and

e Compute product by multiplying the two matrices A; _; and
&».TH:.S

\ /

v
<
Matrix-Chain Multiplicaticn Prcblem (MCM)
© Given: a sequence (Aj, Ao, ..., A,) of n matrices each A; has
dimensions p;_1 X p;
Task: Fully parenthesize their product 4; 4, ... 4,
Objective: while minimizing the number of scalar multiplications
>
=
<
e N
| MCM Problem: Brute-force solution
e Compute all possible full parenthesizations (exhaustive search)
e Compute number of scalar multiplications for each
e Choose (any) one with the minimum such value
=
o
Is this a feasible solution?
Number of possible full parenthesizations (by solving recurrence)
1 2(n—1 .
P(n) =~ (=1 Q4" /n?/?)
n n—1
m. Exponential in n, thus avoid!

[} Auenoyp “X'€

1002 ‘% 1Ay

4 N

Dynamic Pregramming: structure of optimal solution (IT)
(restatement)

To compute an optimal solution of a problem of size k

e Compute all solutions to problem using the optimal
subsolutions of subproblems of size k — 1

e Determine the optimum

Key question: define value of optimal solution

Step 2: Define value of an optimal solution recursively in terms of

the optimal solutions to subproblems

. /

er ALienoyp "x'g

100z ‘% mady

4 N

MCM Problem: structure of optimal solution

An optimal solution by splitting (A1, Ao, ..., A,) in (A1,..., Ak)
and (Apy1,..., 4,y with 1 <k <n

Observation: parenthesization of each portion must be optimal

Justification: If there were a better FP A A, ... A, choosing it
would yield a better FP of (A1, As, ..., A,), which is an
optimum. Contradiction

Conclusion: optimal solution contains within it

optimal subsolutions

Retain: First hallmark of applicability of Dynamic Prog.

— optimal substructure within optimal solution

. /

91 ALaenoyp "x'g

100z ‘% 1ady

QOZ Problem: A recursive solution (1) /
e Consider the chain: (A;, As, ..., A4,)
e Consider a subproblem: A;A;11...A; with1 <i<j<n
e Let m[i, j] be cost of computing A, ;
Task: define m|[i, j] recursively
o i=3j, A
= m[i,i]=0for:=1,2,...,m

i = A; no scalar multiplication required

e | < j, exploit structure of optimal solution (Step 1)
Assume Aj, ..., Aj is split in A;, ..., Ar and Agq1 ... A; with
i<k<i
Then, m[i, j] = min cost of computing A;...x + that of Agy1..; +
cost of multiplying A;..x and Ax41...;
So, m[i, j] = m[i, k] + m[k + 1, j] + pi—1prp; with
E=di+1,...,5—1
/ Check mli, j] for all k ((j — 4) possibilities, choose the minimum \

1 Auenoyp “X'g

100z ‘% 1ady

4 N

Dynamic Pregramming: structure of optimal solution (I)

e To compute an optimal solution, compute all optimal
subsolutions

e Start with all optimal subsolutions of size 1

e Compute all optimal subsolutions of size 2 using the optimal
subsolutions of size 1

e Repeat until getting an optimal subsolution of size n, which is
an optimal solution

\ /

LT ALienoyp "x°g

100z ‘% mady

4 N

MCM Prcblem: A recursive solution (II)

o 0 ifi=jy
mli,jl=9{ , . e
min;<p<;{mli, k] + mlk + 1, j] + piciprp; } if 0 < j
Let s[i, j] be the value of k corresponding to the minimum
Now, s[i, j] tells us where to split problem A;A; 1 ... A; so that the
cost mli, j] of computing A;A;41 ... A, is optimal (i.e., minimal)

. /

w
b
MCM Problem: optimal solution
o 0 ifi=j
mli, j] =))) o
min;<p<;{mfi, k] + mfk + 1, j] + pi—iprp; } if ¢ < j
b=
Two alternatives:
1. Compute m[1,n] with a recursive algorithm (i.e., top-down)
— Recursion tree
2. Compute mi, j] in a bottom-up fashion
— Step 3
g
w
: N
£ MCM Problem: recursion tree, example: m[1,4]
m. 1.4
/
¥ 12
4.4 #5 | 2.2
[\~
o 4 y 13- § 3.3
Recursion algorithms may encounter each subproblem many times
in different branches. Its complexity is:
T(1) > 1
T(m) > 1+ :M\UHQ:: 4+ T(n—k)+1) forn > 1
k=1
> Solution: T'(n) > 2"~ = Q(2"), using substitution method
w Exponential :—(
g GEWEMN@Q thanks to memoization :) K

ST ALaenoyp “x'g

100z ‘% 1ady

4 N

MCM Problem: number of possible subproblems

Each A;A;;, ... A; is possible subproblem

How many subproblems, knowing 1 < i < j <n?
n

1. for i < 7, = 2D possibilities
2

and ¢ = j, n possibilities
Thus % = O(n?) subproblems
2. Alternatively, > ", x = :?m‘tV =0(n?)

=1

We have to compute O(n?) in total

. v

ALienoyp "x°g

1¢

100z ‘% mady

4 N

Memeoization

A technique of Computer Science to speed up programs by
saving the results of computation.

The basic idea of memo functions is to accumulate a
database of input/output pairs; when the function is
called, it first check the database and see if it can avoid

solving the problem from scratch.

Adapted from:
Artificial Intelligence: A Modern Approach
Russel & Norvig

. /

w
b
: [N
¢ | MCM Problem: alternative to recursive algorithm
“ Step 3: Compute value of an optimal solution bottom-up
e Dimensions of A; are p;_1p;, fori=1,...,n
e Input: (po,p1,p2,-..,pn) of length n+1
Example: (30,35, 15,5, 10, 20, 25) is the sequence of 6 matrices
- of dimensions 30 x 35 (A1), 35 x 15 (As), 15 x 5 (As),
& 5 x 10(Ay), 10 x 20 (As), 20 x 25 (Ag)
e Use auxiliary table m[l...n,1...n| for storing mli, j] (i.e.,
costs). Example: m/[6, 6]
e Use auxiliary table s[1...n,1...n| to record index k that
achieved optimal cost in computing m/[i, j]
= for constructing optimal solution, in Step 4
N / Example: s[6, 6]
w
_A
Q / \
s
’ Z 7 E1E R
=3 -3 0O
: shaiif
3 18=8g % O
& Er=x=29 O
- gx~~- 1 L& @
= “:M.H g ° Z E
ST=ys OERE
me] g
NN gol13g ! ¥ g
& A —_ =
L3527 T g
2EF5- i
ﬂUU+ g
T3
o R &
* g
= =
: :
z y
2)
AU .

ZC Auenoyp “X'g

100z ‘% 1ady

4 N

MCM Problem: recursion algorithm

RECURSIVE-MATRIX-CHAIN(p, i, j)
1 ifi=j
2 then return 0
3 ET., : —oC
4 fork—itoj—1
5 do g — RECURSIVE-MATRIX-CHAIN(p, i, k)
+ RECURSIVE-MATRIX-CHAIN(p, k + 1, j) + pi—1PkD;j
if g < m[i, j]
7 then m[i, j] — g
8 return m[i, j]

=

Retain: Second hallmark of applicability of Dynamic Prog.
— overlapping subproblems in recursive (top-down) algorithm

\ /

L3 ALienoyp "x°g

100z ‘% mady

4 N

Line 9: computes m|[i, j] using
mli, j] = ming<p<j{mli, k] + m[k + 1, j] + pi—1pkp;
For instance, for m[2,5], 1 =4, 2 < k < 5 we compute the
m(2,2] +m(3, 5] + p1p2ps
minimum of: m[2,3] + m[4,5] + p1psps
m[2,4] + m[5,5] + p1paps
m[2,2], m[5,5] (=0) were computed when [= 1
m[2, 3], m[4,5] were computed for [= 2
m[2,4], m[3, 5] were computed for [=3 So, for each ml[i, j], we
need mli, k], m[k + 1, j] that were computed at previous step.

. /

¢4 ALienoyp “x'g

100z ‘% mady

-

MCM Prcblem: bottom-up algorithm (II)

Fills up m by solving the parenthesization problem on chains of
increasing length:

e all chains of length [= 1, m[i,],

e all chains of length [= 2, m[i,i + 1],
e all chains of length [= 3, m[i, i + 2],
o all chains of length ...,

e all chains of length I = n, m[i,i +n —1].

N

/

% ALaenoyp "x'g

100z ‘% 1ady

4 N

Line 12: Keeps track of k corresponding to minimum in sz, j]
For example, for s[2,5] = 3 (useful for reconstructing solution)
This means: optimal parenthesization of Ay A3 A4 A5 is
(A2A3A4)As

Time: Loops nested three deep (1,7, k) — O(n®) (actually ©(n?)

Space: O(n2) to store ml[i, j] and sli, j]

Conclusion: Matrix-Chain-Order is much more efficient than
exponential-time brute-force solution (i.e., enumerating all possible
FPs, computing their value, choosing the best one.)

\ /

9% ALaenoyp "x'g

100z ‘% 1ady

QOZ Problem: bottom-up algorithm (I1I)
Lines 2-3: ml[i,i] < 0, chains of length 1
Line 4: [all chain lengths from 2 to n
Loop 4-12: 1. [=2, we compute m[i,i+ 1] for 1 <i < (n—1),
that is, for n = 6, m[1, 2], m[2, 3], m[3, 4], m[4,5], m[5, 6]
(‘second’ diagonal)
2. 1 =3, we compute m[i,i + 2] for 1 <4 < (n — 2), that is,
m[1,3], m[2,4], m[3,5], m[4, 6]
3. | =4, we compute m[i,i + 3] for 1 <1i < (n — 3), that is,
m[1,4], m[2,5], m[3, 6]
4. | =5, we compute m[i,i + 4] for 1 < i < (n — 4), that is,
ml[1, 5], m[2, 6]
5. 1 =6, we compute m[i,i + 5] for 1 <4 < (n — 5), that is,

/ m[1, 6]

~

ALienoyp "x°g

6C Auenoyp “X'€

1002 ‘% 1Ay

- N

MCM: Constructing optimal solution

Matrix-Chain-Order determines value of optimal solution but not
does not directly show multiplication order

Step 4: constructs optimal solution using s[1...n,1...n]

Each s[i, j] records k for optimal parenthesization of A;A;11...4;
— k mU:Hm \r\; into \;.I N \wu.
MCM is optimal for A; g njAsiin]+1..n

Earlier matrix multiplications can be computed recursively

Optimal solution is constructed with Matrix-Chain-Multiply

. /

[=} = = J
& = S Q
==} . = <. = 3
m m ~ = S| \h) o3 = S b || h <. ﬂ m
SE ESHI T AREER TR ofF
=B E AR el g
N NS N [NN TR EQ
TEVEER I Pt Ll LE
Errpre YL sppesvyl = ER
ST 0 r a f v FL oo <
TEE aa g —2 Nu% o o w= I o, 9
Eoe P o ow o ew Tw o, &%
e 5 o+ 2F = s reooy T o E
¥ = t= I = = [w
£ T g I o B
2 w7 wg TF 3
~ o @ c = =
i G 3f ¢ A
£ g B £ =~ N
m = =S = @]
7] m b S n N =
S 82 S =
w
3 Tk 4
A &
s £
2\ 5/
w
<
e N
E
Elements of Dynamic Pregramming
& | Applicability (hallmarks)
1. Optimal substructure within optimal solution
2. Overlapping subproblems in recursive (top-down) algorithm
g
_)

0¢ ALaenoyp "x'g

100% ‘¥ 1dy

4 N

MCM: Constructing optimal solution
First, call Matrix-Chain-Multiply(A4,s,1,n)

MATRIX-CHAIN-MULTIPLY(A, §, I, J)

1 ifji>i

2 then X — MATRIX-CHAIN-MULTIPLY(4, s, i, 8[i, j])

3 Y « MATRIX-CHAIN-MULTIPLY(A, 5, 5[, j} + 1,)
4 return MATRIX-MULTIPLY(X, Y)

5 else return A;

qe ALienoyp "x°g

100z ‘% mady

4 N

Summary

MCM problem solved either by :
e a bottom-up dynamic programming algorithm
e a top-down (recursive) memorized algorithm

in O(n?), where n is the number of matrices in chain

. /

v
.vA
m \ J
Optimal substructure
e a problem exhibits optimal substructure when optimal solution
contains within it optimal solutions to subproblems
w
© e Strategy: assume there is a better solution to a subproblem
and show this assumption contradicts optimality of the solution
to original problem
e Choice of subproblem remains an art and determines
performance of the algorithm
.W
w
<
Overlapping subprcblems
Space of subproblems must be small
w
= e Better reuse few subproblems then generate and solve more
subproblems
e Typically, total number of distinct subproblems polynomial in
size of input
1

