Title: Informed Search Methods
Required reading: AIMA, Chapter 3 (Sections 3.5 and 3.6)
LWH: Chapters 6, 10, 13 and 14.

Introduction to Artificial Intelligence
CSCE 476-876, Fall 2023
URL: www.cse.unl.edu/~choueiry/F23-476-876

Berthe Y. Choueiry (Shu-we-ri)
(402)472-5444
Outline

- Categorization of search techniques
- Ordered search (search with an evaluation function)
- Best-first search:
 (1) Greedy (best-first) search
 (2) A^*
- Admissible heuristic functions:
 how to compare them?
 how to generate them?
 how to combine them?
Types of Search (I)

1- Uninformed vs. informed
2- Systematic/constructive vs. iterative improvement

Uninformed: use only information available in problem definition, no idea about distance to goal → can be incredibly ineffective in practice

Heuristic: exploits some knowledge of the domain also useful for solving optimization problems
Types of Search (II)

Systematic, exhaustive, constructive search:
- a partial solution is incrementally extended into global solution

Partial solution =
- sequence of transitions between states

Global solution =
- Solution from the initial state to the goal state

Examples:
- Uninformed
- Informed (heuristic): Greedy search, A*

→ Returns the path; solution = path
Types of Search (III)

Iterative improvement:

A state is gradually modified and evaluated until reaching an (acceptable) optimum

→ We don’t care about the path, we care about ‘quality’ of state
→ Returns a state; a solution = good quality state
→ Necessarily an informed search

Examples (informed):

\[
\text{Hill climbing, Simulated Annealing (physics), Taboo search, Genetic algorithms (biology)}
\]
Ordered search

• Strategies for systematic search are generated by choosing which node from the fringe to expand first

• The node to expand is chosen by an evaluation function, expressing ‘desirability’ → ordered search

• When nodes in queue are sorted according to their decreasing values by the evaluation function → best-first search

• Warning: ‘best’ is actually ‘seemingly-best’ given the evaluation function. Not always best (otherwise, we could march directly to the goal!)
Search using an evaluation function

• Example: uniform-cost search!

 What is the evaluation function?
 Evaluates cost from to?

• How about the cost to the goal?

 \[h(n) = \text{estimated cost of the cheapest} \]
 \[\text{path from the state at node } n \text{ to a goal state} \]

 \[h(n) \text{ would help focusing search} \]
Cost to the goal

This information is not part of the problem description

<table>
<thead>
<tr>
<th>City</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobreta</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>100</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>
Best-first search

1. Greedy best-first search chooses the node \(n \) closest to the goal such as \(h(n) \) is minimal

2. A* search chooses the least-cost solution

\[
solution \ cost \ f(n) = \begin{cases}
 g(n): \text{cost from root to a given node } n \\
 + \\
 h(n): \text{cost from the node } n \text{ to the goal node}
\end{cases}
\]

such as \(f(n) = g(n) + h(n) \) is minimal
Greedy search

→ First expand the node whose state is ‘closest’ to the goal!

→ Minimize $h(n)$

```python
function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
    inputs: problem, a problem
            EVAL-FN, an evaluation function
    Queueing-Fn ← a function that orders nodes by EVAL-FN
    return GENERAL-SEARCH(problem, Queueing-Fn)
```

→ Usually, cost of reaching a goal may be estimated, not determined exactly

→ If state at n is goal, $h(n) =$?

→ How to choose $h(n)$? Problem specific! Heuristic!
Greedy search: Romania

\[h_{SLD}(n) = \text{straight-line distance between } n \text{ and goal location} \]
Greedy search: Trip from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

... Greedy search! quick, but not optimal!
Greedy search: Problems

From Iasi to Fagaras?

False starts: Neamt is a dead-end

Looping

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Dobrota 242 Pitesti 100
Eforie 161 Rimmuc Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 190
Lugoj 244 Zerind 374
Greedy search: Properties

→ Like depth-first, tends to follow a single path to the goal

→ Like depth-first \{ Not complete
\quad Not optimal
\}

→ Time complexity: $O(b^m)$, m maximum depth

→ Space complexity: $O(b^m)$ retains all nodes in memory

→ Good h function (considerably) reduces space and time
 but h functions are problem dependent :—(
Hmm...

Greedy search minimizes estimated cost to goal $h(n)$
- cuts search cost considerably
- but not optimal, not complete

Uniform-cost search minimizes cost of the path so far $g(n)$
- is optimal and complete
- but can be wasteful of resources

New-Best-First search minimizes $f(n) = g(n) + h(n)$
- combines greedy and uniform-cost searches
- $f(n) =$ estimated cost of cheapest solution via n
- Provably: complete and optimal, if $h(n)$ is admissible
A* Search

- A* search
 Best-first search expanding the node in the fringe with minimal
 \[f(n) = g(n) + h(n) \]

- A* search with admissible \(h(n) \)
 Provably complete, optimal using Tree-Search

- A* search with consistent \(h(n) \)
 Provably optimally efficient using Tree-Search
 Remains optimal even using Graph-Search

(See Tree-Search versus Graph-Search page 77)
Admissible heuristic

An admissible heuristic is a heuristic that never overestimates the cost to reach the goal from the current node: \(h(n) \leq h^*(n) \)

\(\rightarrow \) is optimistic

\(\rightarrow \) thinks the cost of solving is less than it actually is

Example:

\[
\begin{align*}
\textbf{travel: straight line distance} \\
\text{I need 3 years to finish college (at least!)} \\
\text{We are 3 years away from the first flight to Mars (at least!)}
\end{align*}
\]

If \(h \) is \underline{admissible},

\[
f(n) \text{ never overestimates the actual cost of the best solution through } n \ (f(n) \leq f^*(n))
\]
A* Search From Arad to Bucharest
(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti
A* Search is optimal

- G, G_2 goal states $\Rightarrow h(G) = h(G_2) = 0 \Rightarrow g(G) = f(G)$ and $f(G_2) = g(G_2)$
- G optimal goal state $\Rightarrow C^* = f(G)$
- G_2 suboptimal $\Rightarrow f(G_2) > C^* = f(G)$ (1)
- Suppose n is not chosen for expansion

- $f(n) > C^*$ otherwise n would have been expanded
- $f(n) = g(n) + h(n)$ by definition
- $f(n) = g^*(n) + h(n)$ because n is on an optimal path
- We know that $f(n) \leq g^*(n) + h^*(n)$ because $h(n) \leq h^*(n)$, h is admissible
- Thus, $f(n) \leq C^*$ because $C^* = g^*(n) + h^*(n)$

We get a contradiction, thus, n should be chosen for expansion.
A* Search is optimal

- If G, G_2 goal states $\Rightarrow h(G) = h(G_2) = 0 \Rightarrow g(G) = f(G)$, $f(G_2) = g(G_2)$
- If G optimal goal state $\Rightarrow f(G) = C^*$
- If G_2 suboptimal $\Rightarrow f(G) = C^* < f(G_2)$ (1)
- Suppose n is not chosen for expansion
 - G_2, not n, chosen for expansion $\Rightarrow f(n) > f(G_2)$ (2)
 - By definition, $f(n) = g(n) + h(n)$
 - n is on an optimal path $\Rightarrow f(n) = g^*(n) + h(n)$ (3)
 - h is admissible $\Rightarrow h(n) \leq h^*(n)$ (4)
 - (1), (3), (4) $\Rightarrow f(n) \leq g^*(n) + h^*(n) = C^* < f(G_2)$ (5)
- (2) and (5) yield a contradiction
- Thus, n should be chosen for expansion
Which nodes does A^* expand?

Goal-Test is applied to **State(node)** when a node is chosen from the fringe for expansion, not when the node is generated.

Theorem 3 & 4 in Pearl 84, original results by Nilsson

- **Necessary condition:** Any node expanded by A^* cannot have an f value exceeding C^*: For all nodes expanded, $f(n) \leq C^*$

- **Sufficient condition:** Every node in the fringe with $f(n) < C^*$ will eventually be expanded by A^*

In summary

- A^* expands no nodes with $f(n) > C^*$
- A^* expands some nodes with $f(n) = C^*$
- All nodes expanded by A^* are $f(n) \leq C^*$
A* Search is complete

Completeness is guaranteed as long as A* expands only a finite number of nodes \(n \) with \(f(n) \leq C^* \), unless

\[
\begin{align*}
\text{1. } & \exists \text{ a node with infinite branching factor} \\
\text{or} \\
\text{2. } & \exists \text{ a path with infinite number of nodes along it}
\end{align*}
\]

A* is complete \(\begin{align*} \text{on locally finite graphs} \\
\text{and} \\
\exists \delta > 0 \text{ constant, the cost of each operator } > \delta \end{align*} \)
A* Search Complexity

Time:
Exponential in (relative error in $h \times$ length of solution path)
... quite bad

Space: must keep all nodes in memory
Number of nodes within goal contour is exponential in length of solution.... unless the error in the heuristic function $|h(n) - h^*(n)|$ grows no faster than the log of the actual path cost: $|h(n) - h^*(n)| \leq O(\log h^*(n))$
In practice, the error is proportional... impractical..

major drawback of A*: runs out of space quickly

\rightarrow Memory Bounded Search IDA*(not addressed here)
Tree-Search vs. Graph-Search

After choosing a node from the fringe and before expanding it, \texttt{GRAPH-SEARCH} checks whether \texttt{STATE(node)} was visited before to avoid loops.

\rightarrow \texttt{GRAPH-SEARCH} may lose optimal solution

Solutions

1. In Graph-Search, discard the more expensive path to a node

2. Ensure that the optimal path to any repeated state is the first one found

\rightarrow Consistency
Consistency

$h(n)$ is consistent

If $\forall n$ and $\forall n'$ successor of n generated by action a, we have

$h(n) \leq c(n, a, n') + h(n')$, n' is an immediate successor of n

Triangle inequality ($\langle n, n', \text{goal} \rangle$)

Monotonicity

$h(n)$ is monotone

If $\forall n$ and $\forall n'$ successor of n along a path, we have

$h(n) \leq k(n, n') + h(n')$, k cost of cheapest path from n to n'

Important: h is consistent \iff h is monotone

Beware: of confusing terminology ‘consistent’ and ‘monotone’

Values of h not necessarily decreasing/nonincreasing
A* with a consistent heuristic is optimally efficient

.. for any given evaluation function: no other algorithms that finds the optimal solution is guaranteed to expend fewer nodes than A*

Interpretation (proof not presented): Any algorithm that does not expand all nodes between root and the goal contour risks missing the optimal solution

History: Initially, an admissible heuristic was thought to guarantee an optimally efficient search, Dechter and Pearl (JACM) 1985) showed that consistency is needed.
Properties of h: Important results

- h consistent \iff h monotone \hspace{1cm} \text{(Pearl 84)}$
- h consistent \Rightarrow h admissible \hspace{1cm} \text{(AIMA, Exercise 4.7)}$

 consistency is stricter than admissibility

- h consistent \Rightarrow f is nondecreasing
 - By definition: $f(n') = g(n') + h(n')$
 - By definition: $g(n') = g(n) + c(n, a, n')$
 - Thus, $f(n') = g(n) + c(n, a, n') + h(n')$
 - Because f consistent: $c(n, a, n') + h(n') \geq h(n)$
 - Thus, $f(n') \geq g(n) + h(n) = f(n)$

- h consistent \Rightarrow A^* using TREE-SEARCH is optimally efficient

- h consistent \Rightarrow A^* using GRAPH-SEARCH is optimal
Nondecreasing evaluation function

The evaluation function f is guaranteed nondecreasing if and only if h is consistent/monotone.

When f is nondecreasing, we have

- A^* expands no nodes with $f(n) > C^*$
- A^* expands some nodes with $f(n) = C^*$
- A^* expands all nodes with $f(n) < C^*$

(contrast to previous statement: All nodes expanded by A^* are $f(n) \leq C^*$)
Expanding contours

When f is non-decreasing, A* expands nodes from fringe in increasing f value.
We can conceptually draw contours in the search space.

The first solution found is necessarily the optimal solution.
Careful: a TEST-GOAL is applied at node expansion.
Summarizing definitions for A*

- A* is a best-first search that expands the node in the fringe with minimal $f(n) = g(n) + h(n)$
- An admissible function h never overestimates the distance to the goal.
- h admissible \Rightarrow A* is complete and optimal using TREE-SEARCH
- h consistent $\iff h$ monotone
 - h consistent $\Rightarrow h$ admissible
 - h consistent $\Rightarrow f$ nondecreasing
- h consistent \Rightarrow A* is optimally efficient TREE-SEARCH
- h consistent \Rightarrow A* remains optimal using GRAPH-SEARCH
Admissible heuristic functions

Examples

- Route-finding problems: straight-line distance
- 8-puzzle:
 \[
 \begin{cases}
 h_1(n) = \text{number of misplaced tiles} \\
 h_2(n) = \text{total Manhattan distance}
 \end{cases}
 \]

\[
\begin{array}{ccc}
5 & 4 & \text{Start State} \\
6 & 1 & 8 \\
7 & 3 & 2
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
8 & \text{Goal State} & 4 \\
7 & 6 & 5
\end{array}
\]

\[h_1(S) = ?\]
\[h_2(S) = ?\]
Performance of admissible heuristic functions

Two criteria to compare admissible heuristic functions:

1. Effective branching factor: \(b^* \)
2. Dominance: number of nodes expanded
Effective branching factor \(b^* \)

- The heuristic expands \(N \) nodes in total
- The solution depth is \(d \)

\(\rightarrow b^* \) is the branching factor had the tree been uniform

\[
N = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d = \frac{(b^*)^{d+1} - 1}{b^* - 1}
\]

- Example: \(N=52, d=5 \rightarrow b^* = 1.92 \)
Dominance

If \(h_2(n) \geq h_1(n) \) for all \(n \) (both admissible)

then \(h_2 \) dominates \(h_1 \) and is better for search

Typical search costs: nodes expanded

<table>
<thead>
<tr>
<th>Sol. depth</th>
<th>IDS</th>
<th>(A^*(h_1))</th>
<th>(A^*(h_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d = 12)</td>
<td>3,644,035</td>
<td>227</td>
<td>73</td>
</tr>
<tr>
<td>(d = 24)</td>
<td>too many</td>
<td>39,135</td>
<td>1,641</td>
</tr>
</tbody>
</table>

\(A^* \) expands all nodes

\(f(n) < C^* \Rightarrow g(n) + h(n) < C^* \)

\(\Rightarrow h(n) < C^* - g(n) \)

If \(h_1 \leq h_2 \), \(A^* \) with \(h_1 \) will always expand at least as many (if not more) nodes than \(A^* \) with \(h_2 \)

\(\rightarrow \) It is always better to use a heuristic function with higher values, as long as it does not overestimate (remains admissible)
How to generate admissible heuristics?

→ Use exact solution cost of a relaxed (easier) problem

Steps:
- Consider problem P
- Take a problem P' easier than P
- Find solution to P'
- Use solution of P' as a heuristic for P
Relaxing the 8-puzzle problem

A tile can move from square A to square B if

A is (horizontally or vertically) adjacent to B and B is blank

1. A tile can move from square A to square B if A is adjacent to B
 The rules are relaxed so that a tile can move to any adjacent square: the shortest solution can be used as a heuristic
 \(\equiv h_2(n)\)

2. A tile can move from square A to square B if B is blank
 Gaschnig heuristic (Exercice 3.31, AIMA, page 119)

3. A tile can move from square A to square B
 The rules of the 8-puzzle are relaxed so that a tile can move anywhere: the shortest solution can be used as a heuristic
 \(\equiv h_1(n)\)
An admissible heuristic for the TSP

Let path be any structure that connects all cities

⇒ minimum spanning tree heuristic (polynomial)

(Exercice 3.30, AIMA, page 119)
Combining several admissible heuristic functions

We have a set of admissible heuristics $h_1, h_2, h_3, \ldots, h_m$ but no heuristic that dominates all others, what to do?

$$\rightarrow h(n) = \max(h_1(n), h_2(n), \ldots, h_m(n))$$

h is admissible and dominates all others.

→ Problem:

Cost of computing the heuristic (vs. cost of expanding nodes)
Using subproblems to derive an admissible heuristic function

Goal: get 1, 2, 3, 4 into their correct positions, ignoring the ‘identity’ of the other tiles

Cost of optimal solution to subproblem used as a lower bound (and is substantially more accurate than Manhattan distance)

Pattern databases:

- Identify patterns (which represent several possible states)
- Store cost of exact solutions of patterns
- During search, retrieve cost of pattern and use as a (tight) estimate

Cost of building the database is amortized over ‘time’
Other techniques

- Disjoint pattern databases: combining heuristics of two patterns provided admissibility is preserved

- Precomputation of some optimal paths (e.g., maps), cost amortized over time

 Example 1: precomputing optimal path between every two pairs of cities

 Example 2: Choose some landmark cities; for each city v and each landmark L, compute and store $C^*(v, L)$

 $$h_L(n) = \min_{L \in \text{Landmarks}} C^*(n, L) + C^*(L, \text{goal})$$

 If optimal path goes through L, h_L is exact, otherwise it is not admissible.

- More techniques in textbook..