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Outline

e (Categorization of search techniques
e Ordered search (search with an evaluation function)

e Best-first search:
(1) Greedy (best-first) search (2) A*

e Admissible heuristic functions:
how to compare them?
how to generate them?

how to combine them?
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Types of Search (I)

1- Uninformed vs. informed

2- Systematic/constructive vs. iterative improvement

Uninformed :
use only information available in problem definition,

no idea about distance to goal

— can be incredibly ineffective in practice

Heuristic :
exploits some knowledge of the domain

also useful for solving optimization problems

N
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Types of Search (II)

Systematic, exhaustive, constructive search:

a partial solution is incrementally extended into global solution

Partial solution =

sequence of transitions between states

Global solution =

Solution from the initial state to the goal state

Uninf d
Examples: PHIEOTHE

Informed (heuristic): Greedy search, A*

— Returns the path; solution = path
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Types of Search (III)

Iterative improvement:
A state is gradually modified and evaluated until
reaching an (acceptable) optimum

— We don’t care about the path, we care about ‘quality’ of state
— Returns a state; a solution = good quality state

— Necessarily an informed search

’

Hill climbing

Examples (informed):{ Simulated Annealing (physics), Taboo search

Genetic algorithms (biology)

\

N /
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Ordered search

e Strategies for systematic search are generated by choosing which

node from the fringe to expand first

e The node to expand is chosen by an evaluation function,

expressing ‘desirability’ — ordered search

e When nodes in queue are sorted according to their decreasing

values by the evaluation function — best-first search

e Warning: ‘best’ is actually ‘seemingly-best’ given the evaluation
function. Not always best (otherwise, we could march directly to
the goal!)

N /
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Search using an evaluation function

e Example: uniform-cost search!
What is the evaluation function?

Evaluates cost from ............. 0 v, ?

e How about the cost to the goal?

h(n) = estimated cost of the cheapest

path from the state at node n to a goal state

h(n) would help focusing search

N
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Arad

Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi
Lugoj

Cost to the goal

Bucharest

366
0
160
242
161
176
77
151
226
244

Mehadia
Oradea
Rimnicu Vilcea

Timisoara
Urziceni

This information is not part of the problem description

241
234
380
100
193
253
329

80
199
374
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Best-first search

1. Greedy best-first search chooses the node n closest to the goal

such as h(n) is minimal

2. A* search chooses the least-cost solution
(

g(n): cost from root to a given node n

solution cost f(n) ¢ +

| ~(n): cost from the node n to the goal node

such as f(n) = g(n) + h(n) is minimal

N /
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Greedy search

— First expand the node whose state is ‘closest’ to the goal!

— Minimize h(n)

function BEST-FIRST-SEARCH( problem, EVAL-FN) returns a solution sequence
inputs: problem, a problem
Eval-Fn, an evaluation function

Queueing-Fn < a function that orders nodes by EVAL-FN
return GENERAL-SEARCH( problem, Queueing-Fn)

— Usually, cost of reaching a goal may be estimated,

not determined exactly
— If state at n is goal, h(n)= ?

— How to choose h(n)? Problem specific! Heuristic!

N /
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Greedy search: Romania

hsip(n) = straight-line distance between n and goal location

Zerind
75

Arad L]

118 L] Vaslui

(] Timisoara

Pitesti

L] Hirsova

[] Mehadia
75 86

Dobreta ]

Bucharest

Craiova Eforie

[] Giurgiu

Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj

366

160
242
161
176

77
151
226
244

Mehadia
Neamt

Oradea

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara
Urziceni

Vaslui

Zerind

R OOUOWLWWOoOOoOR~—
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Greedy search: Trip from Arad to Bucharest

(a) The initial state
366
(b) After expanding Arad Arad D
> Sibiv > Climisoara CZerind >
253 329 374

(c) After expanding Sibiu

D
366 176 380 193

(d) After expanding Fagaras

... Greedy search!  quick, but not optimal!

N
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Greedy search: Problems

, False starts: Neamt is a dead-end
From Iasi to Fagaras?

Looping

Ll Vaslui
Vel Arad 366 Mehadia
4 Timisoara Bucharest 0 Neamt
Craiova 160 Oradea
Pitesti Dobreta 242 Pitesti
Eforie 161 Rimnicu Vilcea
M Mehadia R Hirsova Fagaras 176 Sibiu
%6 Giurgiu 77 Timisoara
» Bucharest Hirsova 151 Urziceni
Dobreta [ Tasi 226 Vaslui
Craiova  Giurgiu Eforie Lugoj 244 Zerind

24

38
10
19
25

19
37

P OOUOWLWWLWooOR—
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Greedy search: Properties

— Like depth-first, tends to follow a single path to the goal

Not let
— Like depth-first o COTIPIERE

Not optimal
— Time complexity: O(b™), m maximum depth
— Space complexity: O(b™) retains all nodes in memory

— Good h function (considerably) reduces space and time

but h functions are problem dependent :—(

N
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Hmm...

Greedy search minimizes estimated cost to goal h(n)
— cuts search cost considerably

— but not optimal, not complete

Uniform-cost search minimizes cost of the path so far g(n)
— is optimal and complete

— but can be wasteful of resources

New-Best-First search minimizes f(n) = g(n) + h(n)
— combines greedy and uniform-cost searches
f(n) = estimated cost of cheapest solution via n

— Provably: complete and optimal, if h(n) is admissible

N
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A* Search

e A* search

Best-first search expanding the node in the fringe with minimal
f(n) = g(n)+ h(n)
e A* search with admissible h(n)

Provably complete, optimal using TREE-SEARCH

e A" search with consistent h(n)
Provably optimally efficient using TREE-SEARCH
Remains optimal even using GRAPH-SEARCH

(See TREE-SEARCH versus GRAPH-SEARCH page 77)

N /
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Admissible heuristic

An admissible heuristic is a heuristic that never overestimates the

cost to reach the goal from the current node: h(n) < h*(n)
— 1s optimistic
— thinks the cost of solving is less than it actually is

[ travel: straight line distance

Example:< T need 3 years to finish college (at least!)

We are 3 years away from the first flight to Mars (at least!)

\

If h is admissible,
f(n) never overestimates the actual cost of
the best solution through n (f(n) < f*(n))

N /




A* Search From Arad to Bucharest
(a) The initial state

366=0+366

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

449=75+374

418=418+0 615=455+160 607=414+193

B.Y. Choueiry 18 Instructor’s notes #7
September 13, 2023
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/A* Search is optimal \

e (G, G2 goal states = h(G) = h(G2) =0 = ¢g(G) = f(G) and

f(G2) = g(G2)

e (7 optimal goal state = C* = f(G)

e (G2 suboptimal = f(G2) > C* = f(G) (1)

e Suppose n is not chosen for expansion

Start

n
B ﬁi@

e f(n) > C™ otherwise n would have been expanded
e f(n) =g(n)+ h(n) by definition

e f(n) =g"(n)+ h(n) because n is on an optimal path

e We know that f(n) < ¢g*(n) + h™(n) because h(n) < h*(n), h is
admissible

e Thus, f(n) < C* because C* = g*(n) + h*(n)

K\Ne get a contradiction, thus, n should be chosen for expansion /
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/A* Search is optimal \

(e G, G2 goal states = h(G) = h(G2) =0 = g(G) = f(G),

f(G2) = g(G2)
) @ G optimal goal state = f(G) = C*

e (G2 suboptimal = f(G) = C* < f(G2) (1)
e Suppose n is not chosen for expansion
MMAMW
c® ﬁia
e (G2, not n, chosen for expasion = f(n) > f(G2) (2)

e By definition, f(n) = g(n) + h(n)

e 1 is on an optimal path = f(n) = ¢*(n) + h(n) (3)
e h is admissible = h(n) < h™(n) (4)
e (1), (3),(4) = f(n) < g"(n) + h*(n) = C" < f(G2) ()
e (2) and (5) yield a contradition

Kthus, n should be chosen for expansion /
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GOAL-TEST is applied to STATE(node) when a node is
chosen from the fringe for expansion, not when the node is

generated

Theorem 3 & 4 in Pearl 84, original results by Nilsson

e Necessary condition: Any node expanded by A* cannot have an
f value exceeding C*: For all nodes expanded, f(n) < C*

e Sufficient condition: Every node in the fringe with f(n) < C*
will eventually be expanded by A*

In summary
e A* expands no nodes with f(n) > C*

e A* expands some nodes with f(n) = C*

Ko All nodes expanded by A* are f(n) < C* /
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A* Search is complete

Completeness is guaranteed as long as A* expands only a finite

number of nodes n with f(n) < C*, unless

(1. 3 a node with infinite branching factor

{ or

| 2. d a path with infinite number of nodes along it

2

on locally finite graphs

A* is complete { and

30 > 0 constant, the cost of each operator > ¢

\

N
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Time:
Exponential in (relative error in h X length of solution path)
... quite bad

Space: must keep all nodes in memory
Number of nodes within goal contour is exponential in length
of solution.... unless the error in the heuristic function
|h(n) — h*(n)| grows no faster than the log of the actual path
cost: |h(n) — h*(n)| < O(log h*(n))
In practice, the error is proportional... impractical..

major drawback of A*: runs out of space quickly

— Memory Bounded Search IDA*(not addressed here)

N /
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Tree-Search vs. Graph-Search

After choosing a node from the fringe and before expanding it,
GRAPH-SEARCH checks whether STATE(node) was visited before to

avoid loops.
— (GRAPH-SEARCH may lose optimal solution

Solutions
1. In Graph-Search, discard the more expensive path to a node

2. Emnsure that the optimal path to any repeated state is the first
one found

— Consistency

N /
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h(n) is consistent
If V n and V n’ successor of n generated by action a, we have

h(n) <c(n,a,n’)+ h(n'), n’ is an immediate successor of n

Triangle inequality ({(n,n’, goal))

Monotonicity

h(n) is monotone
If Vn and V n’ successor of n along a path, we have
h(n) < k(n,n’) + h(n’), k cost of cheapest path from n to n’

Important: h is consistent < h is monotone

Beware: of confusing terminology ‘consistent’ and ‘monotone’

\ Values of h not necessarily decreasing/nonincreasing /
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A* with a consistent heuristic is optimally efficient

.. for any given evaluation function: no other algorithms that finds
the optimal solution is guaranteed to expend fewer nodes than A*

Interpretation (proof not presented): Any algorithm that does not

expand all nodes between root and the goal contour risks missing

the optimal solution

History: Initially, an admissible heuristic was thought to guarantee an
optimally efficient search, Dechter and Pearl (JACM) 1985) showed that

consistency is needed.

N /
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ropertles of h: Important results

e h consistent < h monotone (Pearl 84)

e h consistent = h admissible (AIMA, Exercise 4.7)

consistency is stricter than admissibility

e h consistent = f is nondecreasing
— By definition: f(n') = g(n') + h(n’)
— By definition: g(n’) = g(n) + ¢(n, a,n’)
= Thus, f(n') = g(n) + c(n, a,n’) + h(n')
— Because f consistent: ¢(n,a,n’) + h(n') > h(n)

— Thus, f(n') = g(n) + h(n) = f(n)

e h consistent = A* using TREE-SEARCH is optimally efficient

e h consistent = A* using GRAPH-SEARCH is optimal

N /
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Nondecreasing evaluation function

The evaluation function f is guaranteed nondecreasing if and only

if h is consistent /monotone
When f is nondecreasing, we have
e A* expands no nodes with f(n) > C*

e A* expands some nodes with f(n) = C*

e A* expands all nodes with f(n) < C*
(contrast to previous statement: All nodes expanded by A™ are

fln) <C7)

N /
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/Expanding contours

When f is non-decreasing, A* expands nodes from fringe in
increasing f value

We can conceptually draw contours in the search space

The first solution found is necessarily the optimal solution
Qareful: a TEST-GOAL is applied at node expansion

/
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Summarizing definitions for A*

e A* is a best-first search that expands the node in the fringe
with minimal f(n) = g(n) + h(n)

e An admissible function h never overestimates the distance to
the goal.

e h admissible = A* is complete and optimal using
TREE-SEARCH

e /, consistent < h monotone
h consistent = h admissible

h consistent = f nondecreasing
e h consistent = A* is optimally efficient TREE-SEARCH

e h consistent = A* remains optimal using GRAPH-SEARCH

N /
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Admissible heuristic functions
Examples

e Route-finding problems: straight-line distance

h1(n) = number of misplaced tiles

e 8-puzzle:
ha(n) = total Manhattan distance
5 4 1 2 3
6 1 8 8 4
7 3 2 7 6 5
Start State Goal State
hi(S) = ?
ho(S) = ?
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Performance of admissible heuristic functions

Two criteria to compare admissible heuristic functions:

1. Effective branching factor: b*

2. Dominance: number of nodes expanded

N
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Effective branching factor »*

— The heuristic expands N nodes in total

— The solution depth is d

— b* is the branching factor had the tree been uniform

i (b*)d—l—l_l
b -1

N=1+b"4+ 0" +...+ (%)

— Example: N=52, d=5 — b* =1.92

N
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/Dominance \

If hao(n) > hi(n) for all n (both admissible)
then ho dominates hy and is better for search

Typical search costs: nodes expanded

Sol. depth IDS A*(h1) A*(h2)
d=12 3,644,035 227 73
d=24 too many 39,135 1,641

A* expands all nodes f(n) < C* = g(n) + h(n) < C*
=h(n) < C* —g(n)
If hy < hy, A* with h; will always expand at least as many (if not

more) nodes than A* with hs

— It is always better to use a heuristic function with

higher values, as long as it does not overestimate (remains

K admissible) /
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How to generate admissible heuristics?

— Use exact solution cost of a relaxed (easier) problem

Steps:

— Consider problem P

— Take a problem P’ easier than P
— Find solution to P’

— Use solution of P’ as a heuristic for P

N
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/Relaxing the 8-puzzle problem \

A tile can move mode square A to square B if
A is (horizontally or vertically) adjacent to B and B is blank

1. A tile can move from square A to square B if A is adjacent to B
The rules are relaxed so that a tile can move to any adjacent
square: the shortest solution can be used as a heuristic

(= ha(n))

2. A tile can move from square A to square B if B is blank
Gaschnig heuristic (Exercice 3.31, AIMA, page 119)

3. A tile can move from square A to square B
The rules of the 8-puzzle are relaxed so that a tile can move

anywhere: the shortest solution can be used as a heuristic

(= (m)
\_ /
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An admissible heuristic for the TSP

Let path be any structure that connects all cities

— minimum spanning tree heuristic (polynomial)

(Exercice 3.30, AIMA, page 119)

N
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Combining several admissible heuristic functions

We have a set of admissible heuristics h1, hs, h3, ..., h,, but no
heuristic that dominates all others, what to do?

— h(n) =max(hi(n),ha(n),..., hmn(n))
h is admissible and dominates all others.

— Problem:

Cost of computing the heuristic (vs. cost of expanding nodes)

N
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/[I sing subproblems to derive an admissible heuristic function\

Goal: get 1, 2, 3, 4 into their correct positions, ignoring the
‘identity’ of the other tiles

* 2 4 1 2
* * 3 4 *
* 3 1 * * *

Start State Goal State

Cost of optimal solution to subproblem used as a lower bound
(and is substantially more accurate than Manhattan distance)

Pattern databases:
e Identify patterns (which represent several possible states)
e Store cost of exact solutions of patterns

e During search, retrieve cost of pattern and use as a (tight)

estimate

Qost of building the database is amortized over ‘time’ /
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Other techniques

e Disjoint pattern databases: combining heuristics of two

patterns provided adimissibility is preserved

e Precomputation of some optimal paths (e.g., maps), cost
amortized over time
Example 1: precomputing optimal path betweeen every two
pairs of cities
Example 2: Choose some landmark cities; for each city v and
each landmark L, compute and store C*(v, L)

hr (n) = MINLecLandmarksC™ (n7 L) + C” (L, goal)

If optimal path goes through L, Ay, is exact, otherwise it is not
admissible.

e More techniques in textbook..

N /




