Title: Informed Search Methods

Required reading: AIMA, Chapter 3 (Sections 3.5 and 3.6)

LWH: Chapters 6, 10, 13 and 14.

Introduction to Artificial Intelligence CSCE 476-876, Fall 2023

URL: www.cse.unl.edu/~choueiry/F23-476-876

Berthe Y. Choueiry (Shu-we-ri) (402)472-5444

Outline

- Categorization of search techniques
- Ordered search (search with an evaluation function)
- Best-first search:
 - (1) Greedy (best-first) search (2) A^*
- Admissible heuristic functions:

how to compare them?

how to generate them?

how to combine them?

2

Types of Search (I)

- 1- Uninformed vs. informed
- 2- Systematic/constructive vs. iterative improvement

Uninformed:

use only information available in problem definition, no idea about distance to goal

 \rightarrow can be incredibly ineffective in practice

Heuristic:

exploits some knowledge of the domain also useful for solving optimization problems

ಲು

Types of Search (II)

Systematic, exhaustive, constructive search:

a partial solution is incrementally extended into global solution

Partial solution = sequence of transitions between states

Global solution = Solution from the initial state to the goal state

Examples: $\begin{cases} \text{Uninformed} \\ \text{Informed (heuristic): Greedy search, A}^* \end{cases}$

 \rightarrow Returns the path; solution = path

Types of Search (III)

Iterative improvement:

A state is gradually modified and evaluated until reaching an (acceptable) optimum

- → We don't care about the path, we care about 'quality' of state
- \rightarrow Returns a state; a solution = good quality state
- \rightarrow Necessarily an informed search

Examples (informed):

Hill climbing

Simulated Annealing (physics), Taboo search

Genetic algorithms (biology)

Ordered search

- Strategies for systematic search are generated by choosing which node from the fringe to expand first
- The node to expand is chosen by an <u>evaluation function</u>, expressing 'desirability' \longrightarrow <u>ordered search</u>
- When nodes in queue are sorted according to their decreasing values by the evaluation function \longrightarrow best-first search
- Warning: 'best' is actually 'seemingly-best' given the evaluation function. Not always best (otherwise, we could march directly to the goal!)

~1

Search using an evaluation function

• Example: uniform-cost search!

What is the evaluation function?

Evaluates cost from to?

• How about the cost **to** the goal?

 $h(n) = \underline{\text{estimated}} \text{ cost of the cheapest}$ path from the state at node n to a goal state

h(n) would help focusing search

Cost to the goal

This information is <u>not</u> part of the problem description

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Best-first search

1. Greedy best-first search chooses the node n closest to the goal such as h(n) is minimal

2. $\underline{A^*}$ search chooses the least-cost solution

solution cost f(n) $\begin{cases} g(n) \colon \text{cost from root to a given node } n \\ + \\ h(n) \colon \text{cost from the node } n \text{ to the goal node} \end{cases}$ such as f(n) = g(n) + h(n) is minimal

Instructor's notes #7September 13, 2023

Greedy search

- → First expand the node whose state is 'closest' to the goal!
- \rightarrow Minimize h(n)

function BEST-FIRST-SEARCH(*problem*, EVAL-FN) **returns** a solution sequence

inputs: *problem*, a problem

Eval-Fn, an evaluation function

Queueing- $Fn \leftarrow$ a function that orders nodes by EVAL-FN **return** GENERAL-SEARCH(problem, Queueing-Fn)

- \rightarrow Usually, cost of reaching a goal may be <u>estimated</u>, not determined exactly
- \rightarrow If state at n is goal, h(n)=
- \rightarrow How to choose h(n)?

Problem specific! Heuristic!

 $h_{SLD}(n) = \text{straight-line distance between } n \text{ and goal location}$

Greedy search: Trip from Arad to Bucharest

... Greedy search! quick, but not optimal!

From Iasi to Fagaras?

False starts: Neamt is a dead-end Looping

 \rightarrow Like depth-first, tends to follow a single path to the goal

 \rightarrow Time complexity: $O(b^m)$, m maximum depth

 \rightarrow Space complexity: $O(b^m)$ retains all nodes in memory

 \rightarrow Good h function (considerably) reduces space and time but h functions are problem dependent :—(

14

$\mathbf{H}\mathbf{m}\mathbf{m}$...

Greedy search minimizes estimated cost to goal h(n)

- \rightarrow cuts <u>search cost</u> considerably
- \rightarrow but not optimal, not complete

Uniform-cost search minimizes cost of the path so far g(n)

- \rightarrow is optimal and complete
- \rightarrow but can be wasteful of resources

New-Best-First search minimizes f(n) = g(n) + h(n)

- \rightarrow combines greedy and uniform-cost searches
 - f(n) =estimated cost of cheapest solution via n
- \rightarrow Provably: complete and optimal, if h(n) is admissible

15

A* Search

• A* search

Best-first search expanding the node in the fringe with minimal f(n) = g(n) + h(n)

- A* search with admissible h(n)Provably complete, optimal using Tree-Search
- A* search with consistent h(n)Provably optimally efficient using Tree-Search Remains optimal even using Graph-Search

(See Tree-Search versus Graph-Search page 77)

Admissible heuristic

An admissible heuristic is a heuristic that <u>never overestimates</u> the cost to reach the goal from the current node: $h(n) \leq h^*(n)$

- \rightarrow is optimistic
- \rightarrow thinks the cost of solving is less than it actually is

Example: { travel: straight line distance
 I need 3 years to finish college (at least!)
 We are 3 years away from the first flight to Mars (at least!)

If *h* is admissible,

 $\frac{f(n) \text{ never overestimates}}{\text{the best solution through } n}$ ($f(n) \leq f^*(n)$)

19

nstructor's notes #7September 13, 2023

A* Search is optimal

- G, G_2 goal states $\Rightarrow h(G) = h(G_2) = 0 \Rightarrow g(G) = f(G)$ and $f(G_2) = g(G_2)$
- G optimal goal state $\Rightarrow C^* = f(G)$
- G_2 suboptimal $\Rightarrow f(G_2) > C^* = f(G)$ (1)
- \bullet Suppose n is not chosen for expansion

- $f(n) > C^*$ otherwise n would have been expanded
- f(n) = g(n) + h(n) by definition
- $f(n) = g^*(n) + h(n)$ because n is on an optimal path
- We know that $f(n) \leq g^*(n) + h^*(n)$ because $h(n) \leq h^*(n)$, h is admissible
- Thus, $f(n) \le C^*$ because $C^* = g^*(n) + h^*(n)$

We get a contradiction, thus, n should be chosen for expansion

A* Search is optimal

(• G, G_2 goal states $\Rightarrow h(G) = h(G_2) = 0 \Rightarrow g(G) = f(G)$, $f(G_2) = g(G_2)$

) • G optimal goal state $\Rightarrow f(G) = C^*$

•
$$G_2$$
 suboptimal $\Rightarrow f(G) = C^* < f(G_2)$ (1)

 \bullet Suppose n is not chosen for expansion

- G_2 , not n, chosen for expasion $\Rightarrow f(n) > f(G_2)$ (2)
- By definition, f(n) = g(n) + h(n)
- n is on an optimal path $\Rightarrow f(n) = g^*(n) + h(n)$ (3)
- h is admissible $\Rightarrow h(n) \le h^*(n)$ (4)
- $(1), (3), (4) \Rightarrow f(n) \le g^*(n) + h^*(n) = C^* < f(G_2)$ (5)
- (2) and (5) yield a contradition

thus, n should be chosen for expansion

Which nodes does A^* expand?

Goal-Test is applied to State(node) when a node is chosen from the fringe for expansion, not when the node is generated

Theorem 3 & 4 in Pearl 84, original results by Nilsson

- Necessary condition: Any node expanded by A* cannot have an f value exceeding C^* : For all nodes expanded, $f(n) \leq C^*$
- Sufficient condition: Every node in the fringe with $f(n) < C^*$ will eventually be expanded by A^*

In summary

- A* expands no nodes with $f(n) > C^*$
- A* expands some nodes with $f(n) = C^*$
- All nodes expanded by A^* are $f(n) \leq C^*$

A^* Search is complete

Completeness is guaranteed as long as A* expands only a finite number of nodes n with $f(n) \leq C^*$, unless

∃ a node with infinite branching factor
 ∃ a path with infinite number of nodes along it

 A^* is complete $\left\{ egin{array}{ll} & \mbox{on locally finite graphs} \\ & \mbox{and} \end{array} \right.$ $\exists \delta > 0 \text{ constant}, \text{ the cost of each operator} > \delta$

A* Search Complexity

Time:

Exponential in (relative error in $h \times \text{length of solution path}$) ... quite bad

Space: must keep all nodes in memory

Number of nodes within goal contour is exponential in length of solution... unless the error in the heuristic function $|h(n) - h^*(n)|$ grows no faster than the log of the actual path cost: $|h(n) - h^*(n)| \leq O(\log h^*(n))$

In practice, the error is proportional... impractical.. major drawback of A*: runs out of space quickly

→ Memory Bounded Search IDA*(not addressed here)

Tree-Search vs. Graph-Search

After choosing a node from the fringe and before expanding it, Graph-Search checks whether State(node) was visited before to avoid loops.

 \rightarrow Graph-search may lose optimal solution

Solutions

- 1. In Graph-Search, discard the more expensive path to a node
- 2. Ensure that the optimal path to any repeated state is the first one found
 - \rightarrow Consistency

Consistency

h(n) is consistent

If $\forall n \text{ and } \forall n' \text{ successor of } n \text{ generated by action } a$, we have $h(n) \leq c(n, a, n') + h(n')$, n' is an <u>immediate successor</u> of n Triangle inequality $(\langle n, n', \text{ goal} \rangle)$

Monotonicity

h(n) is monotone

If $\forall n \text{ and } \forall n' \text{ successor of } n \text{ along a path}$, we have $h(n) \leq k(n, n') + h(n')$, k cost of cheapest path from n to n'

Important: h is consistent $\Leftrightarrow h$ is monotone

Beware: of confusing terminology 'consistent' and 'monotone' Values of h not necessarily decreasing/nonincreasing

A* with a consistent heuristic is optimally efficient

.. for any given evaluation function: no other algorithms that finds the optimal solution is guaranteed to expend fewer nodes than A^*

Interpretation (proof not presented): Any algorithm that does not expand all nodes between root and the goal contour risks missing the optimal solution

History: Initially, an admissible heuristic was thought to guarantee an optimally efficient search, Dechter and Pearl (JACM) 1985) showed that consistency is needed.

Properties of *h*: Important results

• h consistent $\Leftrightarrow h$ monotone

(Pearl 84)

(AIMA, Exercise 4.7)

- h consistent $\Rightarrow h$ admissible consistency is stricter than admissibility
- h consistent $\Rightarrow f$ is nondecreasing
 - By definition: f(n') = g(n') + h(n')
 - By definition: g(n') = g(n) + c(n, a, n')
 - Thus, f(n') = g(n) + c(n, a, n') + h(n')
 - Because f consistent: $c(n, a, n') + h(n') \ge h(n)$
 - Thus, $f(n') \ge g(n) + h(n) = f(n)$
- h consistent $\Rightarrow A^*$ using Tree-Search is optimally efficient
- h consistent $\Rightarrow A^*$ using Graph-Search is optimal

Nondecreasing evaluation function

The evaluation function f is guaranteed nondecreasing if and only if h is consistent/monotone

When f is nondecreasing, we have

- A* expands no nodes with $f(n) > C^*$
- A* expands some nodes with $f(n) = C^*$
- A* expands all nodes with $f(n) < C^*$ (contrast to previous statement: All nodes expanded by A* are $f(n) \le C^*$)

Expanding contours

When f is non-decreasing, A^* expands nodes from fringe in increasing f value

We can conceptually draw contours in the search space

The <u>first</u> solution found is necessarily the optimal solution Careful: a Test-Goal is applied at node expansion

Summarizing definitions for A*

- A* is a best-first search that expands the node in the fringe with minimal f(n) = g(n) + h(n)
- \bullet An admissible function h never overestimates the distance to the goal.
- h admissible \Rightarrow A^* is complete and optimal using Tree-Search
- h consistent $\Leftrightarrow h$ monotone h consistent $\Rightarrow h$ admissible h consistent $\Rightarrow f$ nondecreasing
- h consistent $\Rightarrow A^*$ is optimally efficient Tree-Search
- h consistent \Rightarrow A^* remains optimal using Graph-Search

Admissible heuristic functions

Examples

• Route-finding problems: straight-line distance

• 8-puzzle: $\begin{cases} h_1(n) = \text{number of misplaced tiles} \\ h_2(n) = \text{total Manhattan distance} \end{cases}$

5	4	
6	1	8
7	3	2

Start State

1	2	3
8		4
7	6	5

Goal State

Performance of admissible heuristic functions

Two criteria to compare <u>admissible</u> heuristic functions:

- 1. Effective branching factor: b^*
- 2. Dominance: number of nodes expanded

Effective branching factor b^*

- The heuristic expands N nodes in total
- The solution depth is d

 $\longrightarrow b^*$ is the branching factor had the tree been uniform

$$N = 1 + b^* + (b^*)^2 + \dots + (b^*)^d = \frac{(b^*)^{d+1} - 1}{b^* - 1}$$

- Example: $N=52, d=5 \rightarrow b^* = 1.92$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 <u>dominates</u> h_1 and is better for search

Typical search costs: nodes expanded

Sol. depth	IDS	$\mathbf{A}^*(h_1)$	$\mathbf{A}^*(h_2)$
d = 12	3,644,035	227	73
d = 24	too many	39,135	1,641

A* expands all nodes $f(n) < C^* \Rightarrow g(n) + h(n) < C^*$ $\Rightarrow h(n) < C^* - g(n)$

If $h_1 \leq h_2$, A* with h_1 will always expand at least as many (if not more) nodes than A* with h_2

→ It is always better to use a heuristic function with higher values, as long as it does not overestimate (remains admissible)

Instructor's notes #7September 13, 2023

How to generate admissible heuristics?

 \rightarrow Use exact solution cost of a relaxed (easier) problem

Steps:

- Consider problem P
- Take a problem P' easier than P
- Find solution to P'
- Use solution of P' as a heuristic for P

Relaxing the 8-puzzle problem

A tile can move mode square A to square B if
A is (horizontally or vertically) adjacent to B and B is blank

- 1. A tile can move from square A to square B if A is adjacent to B The rules are relaxed so that a tile can move to any adjacent square: the shortest solution can be used as a heuristic $(\equiv h_2(n))$
- 2. A tile can move from square A to square B if B is blank Gaschnig heuristic (Exercice 3.31, AIMA, page 119)
- 3. A tile can move from square A to square B

 The rules of the 8-puzzle are relaxed so that a tile can move anywhere: the shortest solution can be used as a heuristic $(\equiv h_1(n))$

An admissible heuristic for the TSP

Let path be any structure that connects all cities

⇒ minimum spanning tree heuristic (polynomial)

(Exercice 3.30, AIMA, page 119)

Combining several admissible heuristic functions

We have a set of admissible heuristics $h_1, h_2, h_3, \ldots, h_m$ but no heuristic that dominates all others, what to do?

$$\longrightarrow h(n) = \max(h_1(n), h_2(n), \dots, h_m(n))$$

h is admissible and dominates all others.

\rightarrow Problem:

Cost of computing the heuristic (vs. cost of expanding nodes)

Using subproblems to derive an admissible heuristic function

Goal: get 1, 2, 3, 4 into their correct positions, ignoring the 'identity' of the other tiles

Cost of optimal solution to subproblem used as a lower bound

(and is substantially more accurate than Manhattan distance)

Pattern databases:

- Identify patterns (which represent several possible states)
- Store cost of <u>exact</u> solutions of patterns
- During search, retrieve cost of pattern and use as a (tight) estimate

Cost of building the database is amortized over 'time'

Other techniques

- Disjoint pattern databases: combining heuristics of two patterns provided adimissibility is preserved
- Precomputation of some optimal paths (e.g., maps), cost amortized over time

Example 1: precomputing optimal path between every two pairs of cities

Example 2: Choose some landmark cities; for each city v and each landmark L, compute and store $C^*(v, L)$

$$h_L(n) = min_{L \in \text{Landmarks}} C^*(n, L) + C^*(L, \text{goal})$$

If optimal path goes through L, h_L is exact, otherwise it is not admissible.

• More techniques in textbook..