Lirenoyp "X'd

€70¢% ‘0Og¢ 1equejdag
OF S930U §,1030NI}ISU]

-~

Title: Solving Problems by Searching
AIMA: Chapter 3 (Sections 3.4)

Introduction to Artificial Intelligence

CSCE 476-876, Fall 2023
URL: www.cse.unl.edu/"choueiry/F23-476-876

Berthe Y. Choueiry (Shu-we-ri)
choueiry@cse.unl.edu, (402)472-5444

€20% ‘0 1oquoejdeg

Lirenoyp "X'd

OF S930U §,1030NI}ISU]

-~

function GENERAL-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Essence of search: which node to expand first?

— search strategy

A strategy is defined by picking the order of node expansion

N

Lirenoyp "X'd

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

~

Uninformed: use only information available in problem definition

Types of Search

Heuristic: exploits some knowledge of the domain

Uninformed search strategies
1. Breadth-first search
2. Uniform-cost search

Depth-first search

> W

Depth-limited search

@)

. Iterative deepening depth-first search

6. Bidirectional search

Lirenoyp "X'd

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

-

Search strategies

Criteria for evaluating search:
1. Completeness: does it always find a solution if one exists?
2. Time complexity: number of nodes generated /expanded
3. Space complexity: maximum number of nodes in memory

4. Optimality: does it always find a least-cost solution?

Time/space complexity measured in terms of:
e b: maximum branching factor of the search tree
e d: depth of the least-cost solution

e m: maximum depth of the search space (may be oco)

N

Lirenoyp "X'd

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

4 N

Breadth-first search (I)

— Expand root node
— Expand all children of root
— Expand each child of root

— Expand successors of each child of root, etc.
. -/\

— Expands nodes at depth d before nodes at depth d + 1
— Systematically considers all paths length 1, then length 2, etc.
— Implement: put successors at end of queue.. FIFO

N /

©
©
@
@
©
A

@
@

o~ ©

e

©

a

O @

n A

)

n

S

a

=

T ®

gA

S

an

- /

B.Y. Choueiry 6 Instructor’s notes #6
September 20, 2023

Lirenoyp "X'd

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

/Breadth-ﬁrst search (3) \
— One solution?
— Many solutions? Finds shallowest goal first

1. Complete? Yes, if b is finite

2. Optimal? provided cost increases monotonically with depth,
not in general (e.g., actions have same cost)

3. Time? 1 +b+b% + b3+ ...+ b +b(b? — 1) = O(b?T1)

branching factor b

O (bd—i—l)
depth d

4. Space? same, O(b?1), keeps every node in memory, big
problem

\ can easily generate nodes at 10MB /sec so 24hrs = 860GB

/

Lirenoyp "X'd

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

v

— Breadth-first does not consider path cost g(x)

niform-cost search (I)

—— Uniform-cost expands first lowest-cost node on the fringe

— Implement: sort queue in decreasing cost order

When ¢g(z) = Depth(z) — Breadth-first = Uniform-cost

\ (a) (b)

Lirenoyp "X'd

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

4 N

Uniform-cost search (2)

1. Complete?
Yes, if cost > ¢

2. Optimal?
If the cost is a monotonically increasing function

When cost is added up along path, an operator’s cost 7

3. Time?
+ of nodes with ¢ < cost of optimal solution, O(b! C* /€])

where C™ is the cost of the optimal solution

4. Space?
of nodes with ¢ < cost of optimal solution, O(b/¢"/€1)

N /

Lirenoyp "X'd

Ol

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

/Depth—ﬁrst search (I) \

— Expands nodes at deepest level in tree
— When dead-end, goes back to shallower levels

— Implement: put successors at front of queue.. LIFO

T
G

— Little memory: path and unexpanded nodes
\For b: branching factor, m: maximum depth, space ? /

4
ERoete:

/

B.Y. Choueiry H_VH_V Instructor’s notes #6
September 20, 2023

/Depth—ﬁrst search (2)

Lirenoyp "X'd

Gl

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

/Depth—ﬁrst search (3) \

Time complexity:
We may need to expand all paths, O(b™)
When there are many solutions, DF'S may be quicker than BFS
When m is big, much larger than d, oo (deep, loops), .. troubles

— Major drawback of DF'S: going deep where there is no solution..

Properties:
1. Complete? Not in infinite spaces, complete in finite spaces
2. Optimal?

3. Time? O(b™) Woow..
terrible if m is much larger than d, but if solutions are dense,
may be much faster than breadth-first

\4. Space? O(bm), linear! Woow.. /

Lirenoyp "X'd

el

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

Depth-limited search (1)
— DF'S is going too deep, put a threshold on depth!

For instance, 20 cities on map for Romania, any node deeper
than 19 is cycling. Don’t expand deeper!

— Implement: nodes at depth [have no successor

Properties:

1. Complete?

2. Optimal?

3. Time? (given [depth limit)
4. Space? (given [depth limit)

Problem: how to choose [?

Lirenoyp "X'd

!

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

/Iterative-deepening search (1)

— DLS with depth = 0
— DLS with depth =1
— DLS with depth = 2
— DLS with depth = 3...

Limit=0 @

Limit=1 @ A

R

b Combines benefits of DFS and BFS

/Iterative—deepening search (2)

*®

=0

Limit

»®

1

Limit =

>(®)

>©)

>(®)

*®

=2

Limit

46,

*®

=3

Limit

>©)

@& O

AR GRS

/

B.Y. Choueiry

15

Instructor’s notes #6
September 20, 2023

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

Lirenoyp "X'd

91

-~

Iterative-deepening search (3)

—— combines benefits of DFS and BFS

Properties:
1. Time? (d+1).b% 4+ (d).b+ (d —1).b* + ...+ 1.0% = O(b?)
2. Space? O(bd), like DF'S
3. Complete? like BFS
4. Optimal? like BFS (if step cost = 1)

N

€20% ‘0 1oquoejdeg

Lirenoyp "X'd

L1

OF S930U §,1030NI}ISU]

4 N

Iterative-deepening search (4)

— Some nodes are expanded several times, wasteful?
N(BFS) = b+b*+ b3+ ...+ b+ (0% —)
N(IDS) = (d)b+ (d — 1)b% + ...+ (1)b?

Numerical comparison for b = 10 and d = 5:

N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 =
1,111,100

—— IDS is preferred when search space is large and depth unknown

N /

€20% ‘0 1oquoejdeg

Lirenoyp "X'd

ST

OF S930U §,1030NI}ISU]

-~

Bidirectional search (I)

— Given initial state and the goal state, start search from both
ends and meet in the middle

— Assume same b branching factor, 4 solution at depth d, time:

O(2b%2) = O(b¥/?)

b=10,d =6, DFS= 1,111,111 nodes, BDS=2,222 nodes!

Lirenoyp "X'd

61

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

-~

Bidirectional search (2)

In practice :—(

e Need to define predecessor operators to search backwards

If operator are invertible, no problem

e What if 4 many goals (set state)?

do as for multiple-state search

e need to check the 2 fringes to see how they match
need to check whether any node in one space appears in the
other space (use hashing)
need to keep all nodes in a half in memory O(b%/?)

e What kind of search in each half space?

N

Lirenoyp "X'd

0¢

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

4 N

Summary
Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening
Complete? Yes™ Yes™ No Yes, if | > d Yes
Time pitt ple /e b b b
Space pit! pIC™ /el bm bl bd
Optimal? Yes™ Yes™ No No Yes

b branching factor

d solution depth

m maximum depth of tree
[depth limit

N /

1¢ Lirenoyp "X'd

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

-

Loops: Avoid repeated states (1)

Avoid expanding states that have already been visited

Valid for both infinite and finite trees

[maximum depth

Example: ¢ m + 1 states

| 2™ possible branches (paths)

€20% ‘0 1oquoejdeg

ALienoyp "X'd

GG

OF S930U §,1030NI}ISU]

/Loops: (2) \

, . Open list: Fringe
Keep nodes in two lists:
Closed list: Leaf and expansed nodes
Discard a current node that matches a node in the closed list

Tree-Search — Graph-Search

Issues:

1. Implementation: hash table, access is constant time
Trade-off cost of storing+checking vs. cost of searching
2. Losing optimality
when new path is cheaper/shorter of the one stored

\3. DF'S and IDS now require exponential storage /

Lirenoyp "X'd

cG

€20% ‘0 1oquoejdeg
OF S930U §,1030NI}ISU]

Summary

Path: sequence of actions leading from one state to another

Partial solution: a path from an initial state to another state

Search: develop a sets of partial solutions
e Search tree & its components (node, root, leaves, fringe)
e Data structure for a search node
e Search space vs. state space
e Node expansion, queue order
e Search types: uninformed vs. heuristic
e (6 uninformed search strategies

e 4 criteria for evaluating & comparing search strategies

