Title: Logical Agents AIMA: Chapter 7 (Sections 7.1, 7.2, and 7.3)

> Introduction to Artificial Intelligence CSCE 476-876, Fall 2022 URL: cse.unl.edu/~choueiry/F22-476-876

> > Berthe Y. Choueiry (Shu-we-ri) (402)472-5444

 $\vdash$ 

### Outline

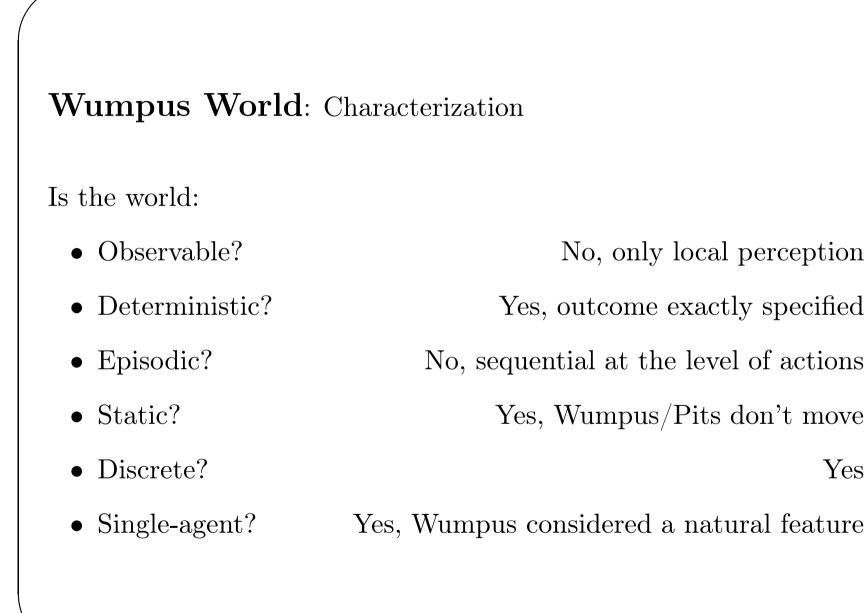
- Wumpus world: motivating example
- Knowledge bases
- Logic for Knowledge Representation & Reasoning
  - Syntax
  - Semantics
  - Inference mechanisms: complexity, completeness

Propositional logic/sentential logic Predicate logic/first-order logic

 $\mathbf{N}$ 

#### Motivating example: The Wumpus world Early computer game Agent explores a cave with: 55555 Stench 5 Breeze -4 PIT Breeze Breeze -S 5555 Stench 5 3 ΡΙΤ いらん • bottomless pits Stench S Breeze -2 • a beast that eats anyone who enters P Breeze Breeze -1 PIT the room, and 凶 START • heap of gold to trap 2 1 3 4

 $\boldsymbol{\omega}$ 


#### ${\bf PEAS}\ {\bf description}$ of the Wumpus world

**Performance measure:** gold +1000, death -1000, -1 per step, -10 for using the arrow

Environment: Squares adjacent to Wumpus are smelly Squares adjacent to pit are breezy Glitter iff gold is in the same square Shooting kills Wumpus if you are facing it Shooting uses up the only arrow Grabbing picks up gold if in same square Releasing drops the gold in same square

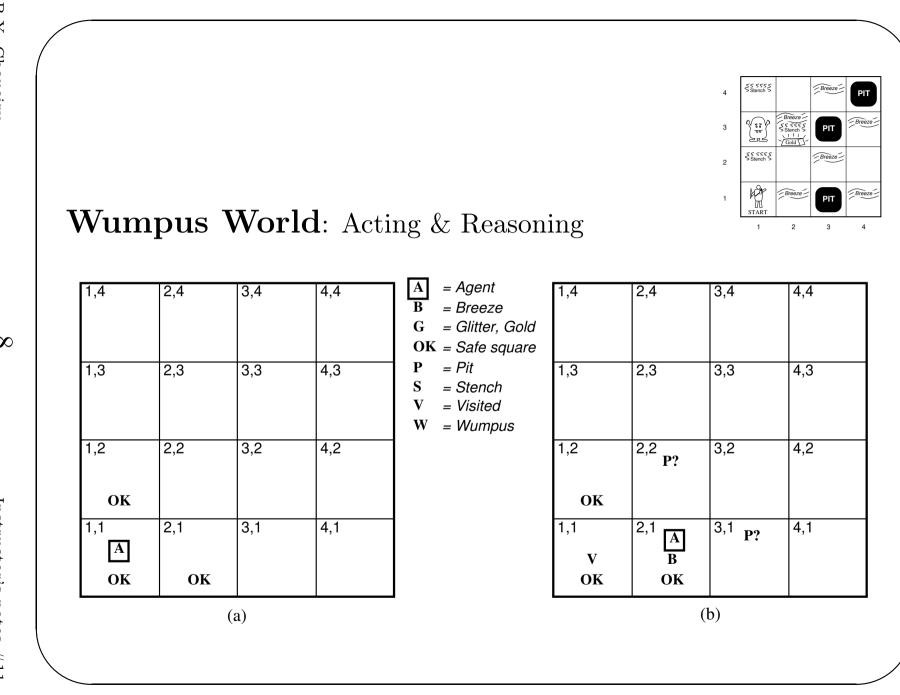
Sensors: Breeze, Glitter, Smell

Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot



СЛ

## **Empirical evaluations:** single/multiple configuration An agent can do well in a single environment: learns the environment, executes rules.


Agent must be tested in a complete class of environments and its average performance must be determined  $\rightarrow$  empirical experiments

- Constraints: start from position [1,1], limited to  $4 \times 4$  grid
- Location of Wumpus and Gold chosen randomly with a uniform distribution (all squares are possible except [1,1])
- Each square, except [1,1], can be a pit with probability 0.2
- Terribly bad cases: gold in a pit or surrounded by pits

#### Wumpus World: Acting & Reasoning

- After receiving initial percepts, agent knows it is in [1,1] and it is OK
- No stench or breeze in  $[1,1] \Rightarrow [1,2]$  and [2,1] are danger-free
- Cautious agent moves only to square it knows it is OK
- Agent moves only to square [2,1], detects breeze y ⇒ ∃ a pit in neighboring squares [1,1], [2,2] and [3,1]. Agent knows no pit in [1,1] → Pit indicated in [2,2] and [3,1] with P?
- Not visited OK squares? Only [1,2]. Agent goes to [1,1], proceeds to [1,2]

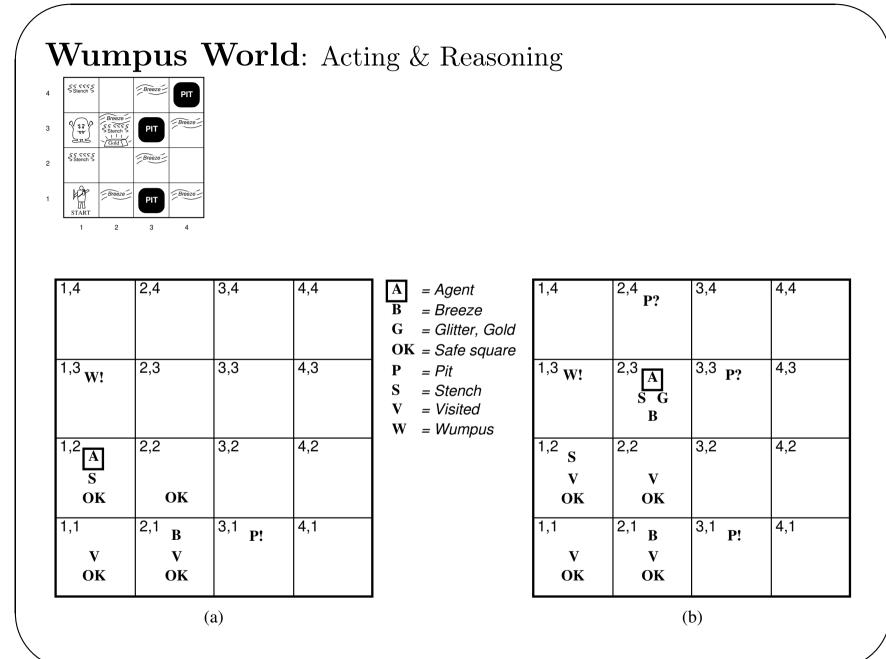
-7

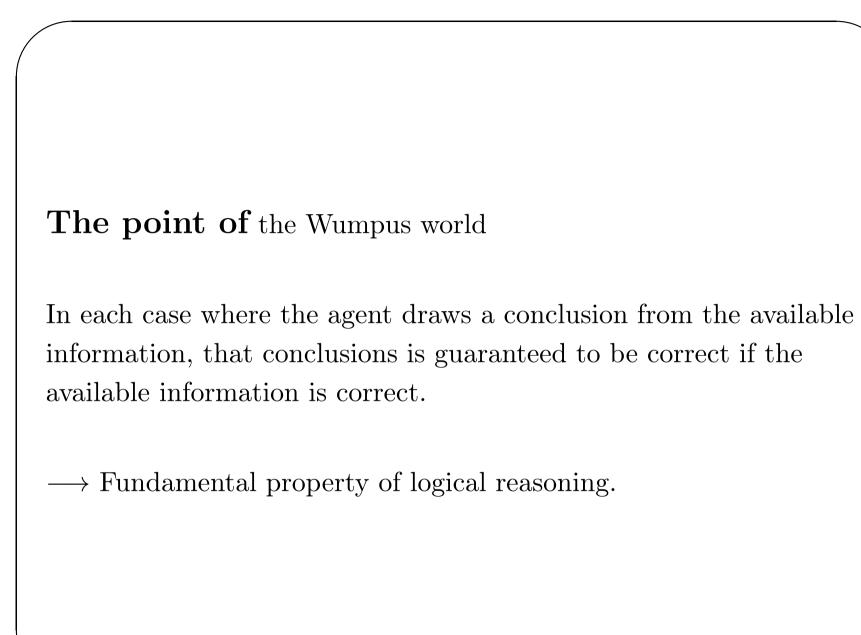


B.Y. Choueiry

 $\infty$ 

#### Wumpus World: Acting & Reasoning


- Agents detects stench in [1,2] ⇒ Wumpus nearby! Possibilities: [1,1], [1,3] or [2,2]. Agent knows [1,1] is Wumpus-free (Agent was there!) Agent can infer [2,2] is Wumpus-free (∠ stench in [2,1]) Agent infers Wumpus is in [1,3] (W!)
- Lack of breeze in [1,2] ⇒ [2,2] is pit-free But, ∃ a pit in either [2,2] or [3,1] ⇒ ∃ pit in [3,1] (P!) Inference combines knowledge gained at different times and places, beyond the abilities of most animals, but Logical Inference can handle this
- Since [2,2] is OK and not visited, Agent moves there
- etc.














11

B.Y.

Choueiry

### Knowledge Base

A fact in the world: A representation of a fact in the world A sentence= a representation of a fact in the world in a formal language

A Knowledge Based (KB): A set sentences A set (of representations) of facts about the world

**Issues:** Access to KB, Representation (language), Reasoning (inference)

### Level of Knowledge

Agents can be viewed at various levels:

#### 1. Epistemological:

Abstract description of what the agent knows about the world

#### 2. Logical:

Encoding of knowledge into sentences

#### 3. Implementation:

Actual implementation (lists, arrays, hash tables, etc.)

- Very important for performance of agent
- Irrelevant for higher levels of knowledge

### A simple KB-agent

function KB-AGENT( percept) returns an action
static: KB, a knowledge base
t, a counter, initially 0, indicating time

TELL(*KB*, MAKE-PERCEPT-SENTENCE(*percept*, *t*)) *action*  $\leftarrow$  ASK(*KB*, MAKE-ACTION-QUERY(*t*)) TELL(*KB*, MAKE-ACTION-SENTENCE(*action*, *t*)) *t*  $\leftarrow$  *t* + 1

return action

The agent must be able to:

represent states, actions, etc.

incorporate new percepts

update internal representations of the world

deduce hidden properties of the world

deduce appropriate actions

14

### Knowledge-Based Agent

function KB-AGENT(*percept*) returns an *action* static: *KB*, a knowledge base t, a counter, initially 0, indicating time

TELL(*KB*, MAKE-PERCEPT-SENTENCE(*percept*, *t*)) action  $\leftarrow ASK(KB, MAKE-ACTION-QUERY(t))$ TELL(*KB*, MAKE-ACTION-SENTENCE(*action*, *t*))  $t \leftarrow t + 1$ return action

#### 15

**Perceives:** Tells KB about new percepts (new sentences) **Representation:** MAKE-PERCEPT-SENTENCE

Access to KB: Asks KB about actions to take (inference) Two primitives: ASK and TELL hide reasoning details

Acts: Tells KB about actions (new sentences) Representation: MAKE-ACTION-SENTENCE, MAKE-ACTION-QUERY

### Logic in general

**Logics** are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language (grammar)

**Semantics** define the "meaning" of sentences; *i.e.*, define <u>truth</u> of a sentence in a world

Example: the language of arithmetic

- Syntax:  $x + 2 \ge y$  is a sentence;  $x^2 + y > x^2$  is not a sentence
- Semantics:

 $-x+2 \ge y$  is true iff the number x+2 is no less than the number y

 $-x+2 \ge y$  is true in a world where x = 7, y = 1

 $-x+2 \ge y$  is false in a world where x = 0, y = 6

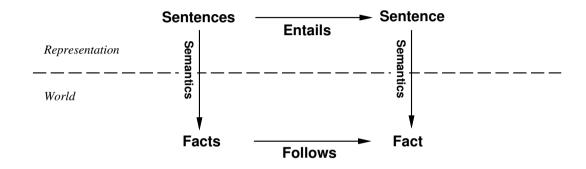
16

# Types of logic

Logics are characterized by what they commit to as "primitives"

#### **Ontological commitment** :

what exists—facts? objects? time? beliefs?


#### **Epistemological commitment** :

what states of knowledge?

| Language            | Ontological Commitment<br>(What exists in the world) | Epistemological Commitment<br>(What an agent believes about facts) |
|---------------------|------------------------------------------------------|--------------------------------------------------------------------|
| Propositional logic | facts                                                | true/false/unknown                                                 |
| First-order logic   | facts, objects, relations                            | true/false/unknown                                                 |
| Temporal logic      | facts, objects, relations, times                     | true/false/unknown                                                 |
| Probability theory  | facts                                                | degree of belief 01                                                |
| Fuzzy logic         | degree of truth                                      | degree of belief 01                                                |

17

## Knowledge representation & reasoning



18

Facts: in the world

**Representations:** in the computer

**Reasoning:** process of constructing new representations from old ones

**Proper Reasoning:** ensures new representations correspond to facts that actually follow from facts in the world

## Entailment

Entailment means that one thing follows from another:  $(\text{KB} \models \alpha)$ 

Knowledge base KB <u>entails</u> sentence  $\alpha$ iff  $\alpha$  is true in all worlds where KB is true

Example: KB:  $\{a \land b\}$ , then KB  $\models a$ ; KB  $\models b$ ; KB  $\models a \lor b$ 

Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

 $(\alpha \models \beta)$ : the truth of  $\beta$  contains the truth of  $\alpha$ 

For example:  $(x + y = 4) \models (4 = x + y), (x + y = 4) \models (4 \ge x + y), (x + y \ge 4) \not\models (4 = x + y),$ 

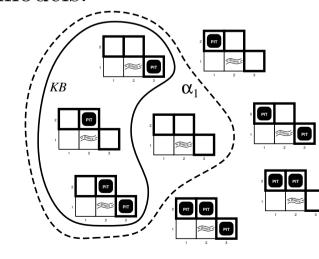
19

## Models

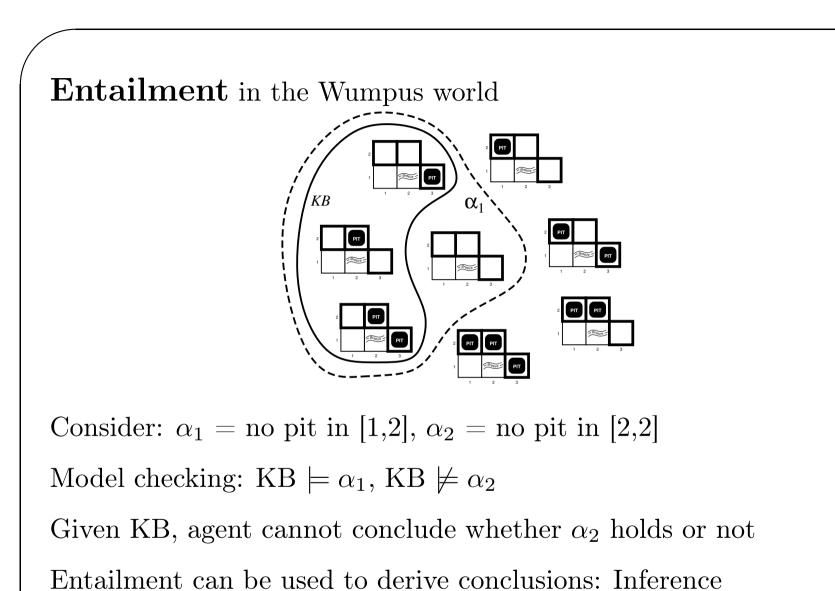
Logicians typically think in terms of **models**, which are formally structured worlds with respect to which truth can be evaluated We say m is a model of a sentence  $\alpha$  if  $\alpha$  is true in m  $M(\alpha)$  is the set of all models of  $\alpha$ Then  $KB \models \alpha$  if and only if  $M(KB) \subseteq M(\alpha)$  $M(\alpha)$ M(KB)

20

#### $Entailment \ {\rm in \ the \ Wumpus \ world}$


Situation: Agent detected nothing in [1,1], breeze in [2,1]  $2^3=8$  possible models

Percepts + the PEAS description = KB


Agent wonders whether pit is in [1,2], [2,2], and [3,1]: Only 3 models where the KB is true

 $\alpha_1$  = no pit in [1,2]:

 $\alpha_1$  is true in 4 models.



21



Inference here is done by model checking

Instructor's notes #11 October 31, 2022

## Inference

 $\mathrm{KB} \vdash_i \alpha \equiv \alpha$  is derived from KB by procedure *i* 

Consequences of KB are a haystack;  $\alpha$  is a needle. Entailment = needle in haystack; inference = finding it

```
Soundness: i is sound if
```

whenever  $\text{KB} \vdash_i \alpha$ , it is also true that  $\text{KB} \models \alpha$ 

**Completeness:** i is complete if

whenever  $\text{KB} \models \alpha$ , it is also true that  $\text{KB} \vdash_i \alpha$ That is, the procedure will answer any question whose answer follows from what is known by the KB

The record of operation of a sound inference procedure is a **proof** Next, propositional logic: syntax, semantics, and inference