Title: Adverserial Search
AIMA: Chapter 5 (Sections 5.1, 5.2 and 5.3)

Introduction to Artificial Intelligence CSCE 476-876, Fall 2023
URL: www.cse.unl.edu/~ choueiry/F23-476-876

Berthe Y. Choueiry (Shu-we-ri)
(402) 472-5444

Context

- In an MAS, agents affect each other's welfare
- Environment can be cooperative or competitive
- Competitive environments yield adverserial search problems (games)
- Approaches: mathematical game theory and AI games

Game theory vs. AI

- AI games: fully observable, deterministic environments, players alternate, utility values are equal (draw) or opposite (winner/loser)
In vocabulary of game theory: deterministic, turn-taking, two-player, zero-sum games of perfect information
- Games are attractive to AI: states simple to represent, agents restricted to a small number of actions, outcome defined by simple rules
Not croquet or ice hockey, but typically board games
Exception: Soccer (Robocup www.robocup.org/)

Board game playing: an appealing target of AI research Board game: Chess (since early AI), Othello, Go, Backgammon, etc.

- Easy to represent
- Fairly small numbers of well-defined actions
- Environment fairly accessible
- Good abstraction of an enemy, w/o real-life (or war) risks :-)

But also: Bridge, ping-pong, etc.

Characteristics

- 'Unpredictable' opponent: contingency problem (interleaves search and execution)
- Not the usual type of 'uncertainty':
no randomness/no missing information (such as in traffic) but, the moves of the opponent expectedly non benign
- Challenges:
- huge branching factor
- large solution space
- Computing optimal solution is infeasible
- Yet, decisions must be made. Forget A*...

Discussion

- What are the theoretically best moves?
- Techniques for choosing a good move when time is tight
$\sqrt{ }$ Pruning: ignore irrelevant portions of the search space \times Evaluation function: approximate the true utility of a state without doing search

Two-person Games

- 2 player: Min and Max
- Max moves first
- Players alternate until end of game
- Gain awarded to player/penalty give to loser

Game as a search problem:

- Initial state: board position \& indication whose turn it is
- Successor function: defining legal moves a player can take Returns $\left\{(\text { move, state })^{*}\right\}$
- Terminal test: determining when game is over states satisfy the test: terminal states
- Utility function (a.k.a. payoff function): numerical value for outcome e.g., Chess: win $=1$, loss $=-1$, draw $=0$

Usual search

Max finds a sequence of operators yielding a terminal goal scoring winner according to the utility function

Game search

- Min actions are significant

Max must find a strategy to win regardless of what Min does:
\longrightarrow correct action for Max for each action of Min

- Need to approximate (no time to envisage all possibilities difficulty): a huge state space, an even more huge search space
e.g., chess:

$$
\left\{\begin{array}{l}
10^{40} \text { different legal positions } \\
\text { Average branching factor }=35,50 \text { moves } / \text { player }=35^{100}
\end{array}\right.
$$

- Performance in terms of time is very important

Example：2－ply game tree
Max＇s actions：a_{1}, a_{2}, a_{3}
Min＇s actions： $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}$

Minimax algorithm determines the optimal strategy for Max \rightarrow decides which is the best move

Minimax algorithm

- Generate the whole tree, down to the leaves
- Compute utility of each terminal state
- Iteratively, from the leaves up to the root, use utility of nodes at depth d to compute utility of nodes at depth $(d-1)$: MIN 'row': minimum of children MAX 'row': maximum of children

Minimax-Value (n)
$\begin{cases}\operatorname{Utility}(\mathrm{n}) & \text { if } n \text { is a terminal node } \\ \max _{s \in \operatorname{Succ}(n)} \operatorname{Minimax}-\operatorname{Value}(s) & \text { if } n \text { is a Max node } \\ \min _{s \in \operatorname{Succ}(n)} \operatorname{Minimax}-\operatorname{Value}(s) & \text { if } n \text { is a Min node }\end{cases}$

Minimax decision

- MAX's decision: minimax decision maximizes utility under the assumption that the opponent will play perfectly to his/her own advantage
- Minimax decision maximes the worst-case outcome for Max (which otherwise is guaranteed to do better)
- If opponent is sub-optimal, other strategies may reach better outcome better than the minimax decision

Minimax algorithm: Properties

- m maximum depth b legal moves
- Using Depth-first search, space requirement is: $O(b m)$: if generating all successors at once $O(m)$: if considering successors one at a time
- Time complexity $O\left(b^{m}\right)$

Real games: time cost totally unacceptable

Alliance formation in multiple players games

How about alliances?

- A and B in weak positions, but C in strong position A and B make an alliance to attack C (rather than each other \rightarrow Collaboration emerges from purely selfish behavior!
- Alliances can be done and undone (careful for social stigma!)
- When a two-player game is not zero-sum, players may end up automatically making alliances (for example when the terminal state maximizes utility of both players)

Alpha-beta pruning

- Minimax requires computing all terminal nodes: unacceptable
- Do we really need to do compute utility of all terminal nodes?
... No, says John McCarthy in 1956:

It is possible to compute the correct minimax decision without looking at every node in the tree, and yet get the correct decision

- Use pruning (eliminating useless branches in a tree)
Example of alpha-beta pruning

(b)

(c)

(d)

(e)

(f)

Try 14, 5, 2, 6 below D
General principal of Alpha-beta pruning
If Player has a better choice m at $\left\{\begin{array}{l}\text { - a parent node of } n \\ \text { - any choice point further up }\end{array}\right.$ n will never be reached in actual play

Once we have found enough about n (e.g., through one of it descendants), we can prune it (i.e., discard all its remaining descendants)
Mechanism of Alpha-beta pruning
α : value of best choice so far for MAX, (maximum)
β : value of best choice so far for MIN, (minimum)

Alpha-beta search:
- updates the value of α, β as it goes along
- prunes a subtree as soon as its worse then current α or β

Savings in terms of cost

- Ideal case:

Alpha-beta examines $O\left(b^{d / 2}\right)$ nodes (vs. Minimax: $O\left(b^{d}\right)$)
\rightarrow Effective branching factor \sqrt{b} (vs. Minimax: b)

- Successors ordered randomly:
$b>1000$, asymptotic complexity is $O\left((b / \log b)^{d}\right)$
b reasonable, asymptotic complexity is $O\left(b^{3 d / 4}\right)$
- Practically: Fairly simple heuristics work (fairly) well

