
Writing More ‘Fluent’ Lisp

Samuel Flint
Computer Science and Engineering
University of Nebraska Lincoln

August 23, 2023

In this document, I provide advice on how to improve your programming style in Lisp based on my experience
grading your homework so far.

General Style

• Variable names can be long and descriptive. They should never be in CamelCase, instead they should be
separated-with-dashes.

• Write code on multiple lines. While

(defun avg (l) (/ (reduce #’+ l) (length l)))

is fine, it is not a particularly good habit to be in. Instead, try indenting your code:

(defun average (list)

(/ (reduce #’+ list)

(length list)))

Because, in Lisp, indentation is communicates the ‘structure’ of the code and can dramatically improve
readibility. If you do not want to manually indent your code, use C-M-q in Emacs.

Lispy Mechanics

• Instead of (+ var 1) or (- var 1) use (1+ var) and (1- var), respectively.

• Be judicious with your control flow constructs.

– Use if when you have two cases, a positive case and a negative case.

– Use when when you have only a positive case.

– Use unless when you have only a negative case.

– Use case if you are checking to see if something matches one of several atomic options (like switch/-
case in C).

– Use cond in any case where you have more options.

• There are several forms of equal: equal, eql, eq, equalp and =.

– eq: The two objects are at the same memory location. E.g.:

1

(eq ’a ’a) ⇒ t

(eq ’a ’b) ⇒ nil

(defvar b ’a) (eq ’a b) ⇒ t

– eql: Either the objects fulfill eq or they are numbers of the same type and value or are the same
character.

(eql 2 2) ⇒ t

(eql 2 2.0) ⇒ nil

– equal: Numbers and Characters: eql; Symbols: eq; Otherwise: the objects are the same structurally.

(equal "abc""abc") ⇒ t

(equal "abc""ABC") ⇒ nil

(equal ’(a (b c)) ’(a (b c))) ⇒ t

(equal ’(a b c) ’(a (b c))) ⇒ nil

– equalp: equal; if character, then if char-equal (ignores case); if numbers, having the same numer-
ical value (type notwithstanding).

(equalp #A#a) ⇒ t

(equalp 2 #(2 0)) ⇒ nil

– =: Only to be used for numbers, follows eql.

– string=: Only to be used for strings. If you need to compare the equality of strings, use this

• let, let* – These are used to introduce bindings and restrict their lexical scoping. Use this form instead
of setf at the start of a function. let* performs its bindings serially, so a later binding can rely on the
value of an earlier binding.

(let ((a 1)

(b 2))

(+ a b))

(let* ((a 1)

(b (1+ a)))

(+ a b))

• do, do*, dolist, dotimes – do and do* work similarly, with the starred version binding in parallel.
Syntax, generally is of the following form:

(do ((variable-1 init-form update-form)

(variable-2 init-form update-form))

(termination-condition return-value)

code-here)

dolist is exactly as it says, it does an action for each element of a list, e.g.,

(dolist (variable list return-value)

code-here)

Likewise, for dotimes with an n instead of list.

• loop – Avoid pretty generally, it is hard to debug, and un-lispy.

• collect – If you must use loop, you are likely using it for the sake of collect. Instead of something like:

2

(let (vals)

(loop for i from n to m

do (push i vals))

(reverse vals))

use:

(loop for i from n to m collect i)

However, there are other uses for collect.

• The Higher-Order Functions:

– map variants – Use these to apply a function to each element of a list (or lists) in turn. E.g.,

(mapcar #’1+ ’(1 2 3 4 5 6 7 8 9 10))

– reduce – When you have a list of a single type of data reduce allows you to reduce the list into a
single element using some binary function (i.e., a function that takes two arguments). For instance,
given a function function-name that produces a list of integers, (reduce #’+ function-name) will
provide the sum of the list returned.

– remove-if, remove-if-not, complement – Avoid using remove-if-not, instead, use complement,
for example, instead of

(remove-if-not #’evenp list)

use

(remove-if (complement #’evenp) list)

(the existence of oddp notwithstanding).

– funcall, apply – If you are writing a function that accepts a function as an argument, use either
funcall or apply to use the passed function.

• lambda – Use this construct, which a has syntax similar to that of defun to define anonymous functions.
You may find this useful in reduce, remove-if or map. E.g.,

(lambda (n)

(if (oddp n)

(- n)

n))

3

