
CSCE476/876 Fall 2023

Homework 1: Introduction to Lisp

Assigned on: Monday, August 28, 2023.

Due: Friday, September 8, 2023.

Goal. The goal of this homework is that you learn the fundamentals of Lisp and practice
writing Lisp code using Emacs. We strongly recommend that you:

• Go through the Emacs tutorial (see below).

• Read Chapter 2, 3, and 4 of the book on Lisp by Winston and Horn (LWH).

• Practice the materials in Sections 1 and 2 below.

Submitting your work. You will be graded on answering the questions in Sections 3 and 4
below. All lisp functions should be done using ACL (preferably in Emacs). Type the
answers to the non-programming questions in a $<$lastname$>$.txt file and put all
your code for the programming questions in a $<$lastname$>$.lisp file. Submit both
files on webhandin http://cse.unl.edu/handin before class on Friday, September 8,
2023.

Contents

1 Getting started 2

2 Basic training 4

3 Simple exercises (33 points) 4

4 Programming (ugrads: 72 points, grads: 102 points) 5

1

1 Getting started

You have already seen most of the content of this ‘getting started’ section during the recita-
tions. We just want to insist and make sure that you have gone through the steps below.

1. Emacs is more than a simple (and powerful) editor: it provides you with a terrific en-
vironment for running a Common Lisp interpreter. Emacs may seem a little confusing
at the beginning, but your efforts will quickly pay off.

(a) Conscientiously go through the Emacs tutorial:
http://cse.unl.edu/~choueiry/emacs-tutorial.txt

(b) Review some of the most commonly useful Emacs commands:
http://cse.unl.edu/~choueiry/Recitation/emacs.pdf

(c) Check out the key-stroke accelerators provided in
http://cse.unl.edu/~choueiry/emacs-lisp.html .

(d) Practice using Emacs. Open an Emacs buffer, create a file my-test.lisp, write
a Lisp function, and test it.
In particular, load a file (C-x C-f), check how TAB and the Space bar achieve
completion of commands and file names, interrupt a command (C-g), delete a
line in a buffer (C-k), move forward and backward in the buffer (C-f, C-b, M-f,
M-b, etc.), save the modifications in the buffer to the file (C-x C-f), check the
message in the mini buffer), kill an open buffer (C-x k)

2. Start a Lisp interpreter in Emacs by typing M-x fi:common-lisp (check out comple-
tion with the space bar by typing M-x fi:com<space-bar>). Answer yes by typing
<return> to all questions asked in the mini-buffer (until you learn to do otherwise).
Now you should have a prompt sign of the Lisp interpreter. This is a loop that reads
whatever you type in and evaluates it as a Lisp expression as soon as you hit the carriage
return. Practice your knowledge of Emacs and interactions with the Lisp interpretor
by executing all the instructions in Chapter 2, 3, and 4 of LWH. In particular,

• Test the functions car, cdr, cadr, cdar, first, length which operate on a list.

• Test cons, append and list and note the differences between them with respect
to their input and output.

• Test push, pop, pushnew, delete and remove and note whether or not they are
destructive.

• Test unary predicates atom, listp, consp, null, evenp, oddp, etc. on atoms,
numbers, lists, NIL and T as input.

• Test the binary predicate =. Then test eq, eql and equal. For instance, define:
(setf ls1 ’(a b c)) and (setf ls2 ’(b c)).

2

Now, Test:
(eq (cdr ls1) ls2) and (equal (cdr ls1) ls2).

Search and read the documentation on the web.1 Can you explain why the two
functions give a different result?

• Read about and test the constructs if, when, cond, do, do*, dolist, dotimes,
mapcar, find, reduce (my absolute favorite), some, every.

• Read about and test the functions on sets (as lists): intersection, union,
set-difference, member, subseteq, adjoin.

• mapcar is a very useful function that will make the dot-product, x-product, and
Cartesian Product very simple to do. mapcar is used in the form (literally taken
from Guy Steele’s Common Lisp page171):

mapcar function list &rest more-lists

mapcar operates on successive elements of the lists. First the function is applied to
the car of each list, then to the cadr of each list, and so on. The value returned by
mapcar is a list of the results of the successive calls to the function. For example:

(mapcar #’abs ’(3 -4 2 -5 -6)) ⇒ (3 4 2 5 6)

(mapcar #’+ ’(1 2 3) ’(1 2 3)) ⇒ (2 4 6)

3. Save some of the functions you have written in the file my-test.lisp. Exit Lisp by typ-
ing :exit in the Lisp interpreter and start Lisp again typing M-x fi:com<space-bar>.
You can load the functions you have written in my-test.lisp in the Lisp environment
by typing in your lisp buffer:

(load "<path>/my-test.lisp")

Emacs provides also some quick commands: :ld ~/<path>/my-test.lisp. To have a
list of all the abbreviated commands provided by emacs, type in your Lisp buffer help.
Note that all abbreviated commands start with a column, that is, :.

4. The stepper of ACL works best on compiled code. Check out the following scenario.
First, compile your file and load the compiled filed. Then, type in the *common-lisp*

buffer in Emacs:
:step ’<name of the function to step through> .

Then type the function call:
(<name of the function to step through> <arg1> <arg2> etc.) .

To stop the stepper in emacs, just type: :step.

5. Exit Lisp with :ex and quit emacs C-x C-c.

Now, it is time to jump into the fire! Do not hesitate to ask the instructor and TA for help.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/clm/node74.

html

3

2 Basic training

Follow the instructions on the webpage of the class:

1. From the Recitations page, go through “First Steps in Lisp” https://cse.unl.edu/

~choueiry/F23-476-876/Recitation/FirstStepsInLisp.pdf

2. From the Recitations page, go through “Next Steps in Lisp” https://cse.unl.edu/

~choueiry/F23-476-876/Recitation/SecondStepsInLisp.pdf

3. From the Recitations page, carefully read “Writing More ‘Fluent’ Lisp” https://cse.

unl.edu/~choueiry/F23-476-876/Recitation/notes-better-lisp.pdf

3 Simple exercises (33 points)

Complete the following exercises.

1. Is the following an atom, list, both, or neither? (5 points)

(a) ATOM

(b) (rest ’(1 2 3))

(c))(

(d) (rest ’())

(e) ()

2. Math Evaluate the following functions. (3 points)

(a) (/ (+ 5 7) (- 1 4))

(b) (+ (* 3 4) (* 5 (first ’(0 1 2))))

(c) (max 3 (min 5 2 8))

3. First/Rest (8 points)
Get to the number 3 in each of the lists below by using some sequence of the Lisp
functions first and rest. You may also use compound car/cdr’s.

Example: (setf x ’(1 2 3 4))

Answer: (first (rest (rest x))) or (caddr x)

(a) (setf x ’(1 (2 (3 (4)))))

(b) (setf x ’((1 2) (3 4)))

(c) (setf x ’(1 (2 3) 4))

(d) (setf x ’((((1) 2) 3) 4))

4

4. Cond (4 points)
Define a function ESTIMATE-SIZE that takes a positive number n as an argument and
returns SMALL if n < 10, MEDIUM if 10 ≤ n < 50, and BIG if n ≥ 50

5. NEGATIVE-P (2 points)
Define a predicate function NEGATIVE-P that takes a number as its argument and
returns t if the number is negative. If the number is null or positive, it should return
nil.

6. X5 (2 points)
Define a function X5 that takes one argument, tests whether the argument is a number,
and returns the number multiplied by 5 otherwise returns the argument itself.

7. Using mapcar (6 points)
Find an on-line manual of Lisp, such as:

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html

http://www.franz.com/support/documentation/6.2/ansicl/ansicl.htm

and study the definition and use of the function mapcar. Using mapcar, write a short
function MAPIPULATE that takes a list of numbers and multiplies each negative number
by 5, leaving every non-negative number as is, and return the modified list.

8. Describe in words how the following function operates: (3 points)

(defun foo(s)

(cond ((null s) 1)

((atom s) 0)

(t (max (+ (foo (first s)) 1)

(foo (rest s))))))

4 Programming (ugrads: 72 points, grads: 102 points)

1. Exponentiate (5 points)
Write the function (power n m) that raises and number n to an integer power m.
For example, (power 3 2) should return 9. (Note: You are expected to write power

yourself, you may not use expr or similar functions.)

2. Even numbers (5 points)
Common Lisp has built-in functions that can be used to test whether a value is even
or odd. These functions are called evenp and oddp. Both function take a single
integer argument. Experiment with them to see what they do. Write a function
(all-even list) that will take a list of integers and return a list containing only the
even integers. For example

(all-evenp ’(1 2 3 4 5 6 7 8 9 10))

5

should return (2 4 6 8 10). This can easily be done by using a loop to iterate across
the list and using the evenp function to decide whether or not to save the current
element. (Note: You are expected to write all-evenp yourself, you may not use
remove-if-not or similar functions.)

3. The cond conditional (10 points)
Review the syntax of the cond conditional operator. You will use it in this problem to
handle a three case situation. Write a function (what-is n) that will return ATOM if
the argument is an atom, LIST if the argument is a list, or NUMBER if the argument is
a number. For example, (what-is -91) will return NUMBER and (whatis ’(1 2 3))

will return LIST. Use cond to test for which value to return.

4. Learn to use reduce (10 points)
Find an on-line manual of Lisp, such as:

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html

http://www.franz.com/support/documentation/6.2/ansicl/ansicl.htm

and study the definition and use of the function reduce. This is a particularly ele-
gant and powerful construct (instructor’s favorite). Using reduce, write a very short
function, average-reduce, that takes a list of numbers and returns the value of their
average.

5. Member (10 points)
Common Lisp has a built-in function called member, which is called with the syntax

(member element list)

and will return nil if the element is not found in the list. If, on the other hand, the
element is found in the list, the function will return a portion of the list, starting with
the first occurrence of the element. For example, (member ’b ’(a b c d)) will return
(B C D). Also, observe that (member ’b ’(a b c a b c)) returns (B C A B C). Ex-
periment with the function, to be certain that you understand what it does.

(a) Write a function (my-member-cond element list) that duplicates the function-
ality of the built-in member function. Implement the function using cond and a
recursive call.

(b) Write a function (my-member-do element list) that duplicates the functional-
ity of the built-in member function. Implement the function iteratively, using the
do primitive (see page 117 in your Lisp textbook).

6. Find (6 points)
Common Lisp has a built-in function called find, which is called with the syntax

(find element list)

and will return nil if the element is not found in the list. If, on the other hand, the
element is found in the list, the function will simply return that element. For exam-
ple, (find ’b ’(a b c d)) will return B. Observe that (find ’b ’(a b c a b c))

6

also returns B. Modify the my-member- functions that you wrote for Homework 2 to
duplicate the built-in find function. This is a very simple task.

(a) Create a function (my-find-cond element list) that uses recursion.

(b) Create a function (my-find-do element list) that uses iteration.

7. List iteration (Total 8 points, 2 points each)
The goal of this exercise is to make you use various constructs of Common Lisp to
iterate over the elements of list. You are asked to write a function double-xx that
takes as input a list of numbers such as ’(3 22 5.2 34) and returns a list of “doubled-
up” numbers ’(6 44 10.4 68).

(a) Write double-mapcar using mapcar.

(b) Write double-dolist using dolist.

(c) Write double-do using do.

(d) Write double-recursive using cond and recursive calls.

8. Exify (8 points)
Write a recursive function exify that takes a list as input and returns a list in which
all non-nil elements are replaced by the atom X.
Test it first on: (exify ’(1 hello 3 foo 0 nil bar)).
It should return: (X X X X X NIL X).
Then test it on: (exify ’(1 (hello (3 nil (foo)) 0 (nil)) (((bar))))).
It should return: (X (X (X NIL (X)) X (NIL)) (((X)))).

9. Count occurrences (5 points)
Write a recursive function count-anywhere that takes an atom and an arbitrary nested
list as input and counts the number of times the atom occurs anywhere within the list.
Example (count-anywhere ’a ’(a (b (a) (c a)) a)) returns 4.

10. Dot Product (5 points)
Write a function that computes the dot product of two sequences of numbers repre-
sented as lists. Assume that the two lists given as input have the same length. The
dot product is computed by multiplying the corresponding elements and then adding
up the resulting product. Example:

(dot-product ’(10 20) ’(3 4))) = 110

(dot-product ’(1 2 4 5) ’(3 4 3 4)) = 43

11. X-product (15 points)
Mandatory for grad students, bonus for undergrads.

Write a function that takes a function name and two lists and returns the x-product
defined by applying the function on the elements of the lists at the same position.

7

Example:
(x-product #’+ ’(1 2 3) ’(10 20 30)) returns (11 12 13 21 22 23 31 32 33)

and
(x-product #’list ’(1 2 3) ’(a b c))

returns ((1 A) (2 A) (3 A) (1 B) (2 B) (3 B) (1 C) (2 C) (3 C))

Note: The terminology used above (i.e., dot, x-, Cartesian product) is not a strict
one.

12. Cartesian Product 15 points)
Mandatory for grad students, bonus for undergrads.

Write a function that takes a list of any number of lists and return the Cartesian
product:
(k-product ’((a b c) (1 2 3)))

returns: ((A 1) (A 2) (A 3) (B 1) (B 2) (B 3) (C 1) (C 2) (C 3)) and
(k-product ’((a b) (1 2 3) (x y)))

returns: ((A 1 X) (A 1 Y) (A 2 X) (A 2 Y) (A 3 X) (A 3 Y)

(B 1 X) (B 1 Y) (B 2 X) (B 2 Y) (B 3 X) (B 3 Y))

8

