CSCE476/876 Fall 2023
Implementing Search

Assigned on: Friday, Oct 27, 2023

Due: Friday, Nov 10, 2023

Value: Bonus homework, 80 points.

The goal of the programming assignment is to give a chance to implement search, run experiments, and
report your results. There are two options:

1. Romanian Holidays
2. The 3x3 sliding-tile puzzle

We provide detailed guidance on how to implement the first option. We provide significantly less guidance
for the second option.

1. You can do either option. You will receive a grade for only one of the options, not both. If you do
both, you must specify the one for which you want to be graded.

2. Programming assignment should be submitted with handin.

3. Do not hesitate to seek help during recitation and office hours.

Contents
1 Romanian Holidays (Total 80 points) 2
1.1 Data structures (38 points) 2
111 Tasks . . o o o e 2
1.2 Implementing Search (42 points) L 3
1.2.1 Results toreport 4
1.2.2 Some indications 4
2 Sliding-Tile Puzzle (80 points) 5
2.1 Requirements L e e e 5
2.2 Indications e 6

1 Romanian Holidays (Total 80 points)

This exercise will guide you, step by step, to implement the data structures representing Romania’s map
and the search algorithms for conducting search.

Note that in the following sections, we refer to variable and function names that may not be accepted
by the programming language you choose (e.g., C, C++, and Java variables cannot contain hyphens). In
these cases, just use names that are similar but acceptable by the language by, for example, using camel case
instead of hyphens. Additionally, an association list is merely a list of key-value pairs.

It is not necessary to exactly implement these structures, but your implementation should be similar
enough that the graders can clearly see the analogous variables and structures.

1.1 Data structures (38 points)

Create the data structures required to represent the map of Romania. Include the information about the
distances between two cities linked by a road as well as the distance from any given city to Bucharest as
indicated in Figure 1.

Arad 366 Mehadia 241

e Bucharest 0 Neamt 234
) Vaslui Craiova 160 Oradea 380

Dobreta 242 Pitesti 100

Eforie 161 Rimnicu Vilcea 193

Fagaras 176 Sibiu 253

O wisow Giurgiu 77 Timisoara 329

s s Hirsova 151 Urziceni 80

Dobreta [] - lasi 226 Vaslui 199

Craiova o Giurgin e LU0 244 Zerind 374

Figure 1: Map of Romania with road distances in kilometers and straight-line distances to Bucharest.

Indications (follow illustration in Figure 2):

e Create a data structure for a city.

e Include an attribute name to store the name of the city.

e Include an attribute neighbors to store the neighboring cities.

e Include an attribute h that provides the value of the straight-line distance to Bucharest.
e Create two ways to access the cities:.

1. a list called allCitiesList and
2. a hash-table allCitiesHash

e After creating structures for all the cities, loop through them again in order to include, in the relevant
attribute of a city, a reference its neighboring cities. Store these neighbors as an association list of the
structure of a neighbor and the distance between the two.

1.1.1 Tasks
1. (8 points) Design, implement and test your map.

2. (4 points) Write a function allCitiesFromList that takes a global variable,
allCitiesList, and returns a list of all names of cities on the map.

Name
Name Neighbors |((, d4) (\ d2) ..
Neighbors | ((\d1) (~d2)...) /
h

\/

Name \
Name Neighbors | ((/ d3) (' di) ...)
. h
Neighbors | ((* d1) (\d3)...) / -
b :

Figure 2: Data structures.

3. (4 points) Write a function allCitiesFromHtable that takes a variable,
allCitiesHtable and returns a list of all the structures of cities on the map.

4. (4 point) Write two functions getCityFromList and getCityFromHtable that take the name of a
city as input and return the corresponding structure (by accessing a variable, allCitiesList and
allCitiesHtable, respectively).

5. (4 points) Write two functions neighborsUsingList and neighborsUsingHtable that take the name
of a city as input and return the list of structures of its direct neighbors. neighborsUsingList and
neighborsUsingHtable should use getCityFromList and getCityFromHtable, respectively.

6. (7 points) Using allCitiesHtable, write a function neighborsWithinD that takes the name of a city
myCity and a number distance, then returns, for all direct neighbors within distance from myCity
(<), an association list of the structures of the neighbors of myCity and their distance to myCity.

7. (7 points) Using allCitiesHtable, write a function neighborsP that takes the name of two cities
cityOne and cityTwo, and returns the distance between them if they are directly connected or nil if
they are not.

1.2 Implementing Search (42 points)

You are asked to implement search the following search strategies, first as a TREE-SEARCH then as a GRAPH-
SEARCH:

e (7 points) Any uninformed search strategy of your choice,
e (7 points) A Greedy search strategy, and
e (7 points) An A* search strategy.

for the ‘Romanian Holiday’ problem. Needless to say, you should first get Section 1 to work. Write Search
that take as input the name of any city on the map, the name of a search strategy, and outputs:

1. The path to Bucharest,

2. The number of nodes generated/visited by the search process,
3. The cost of the path found (even when the function g(n) is not used to choose the node to expand),
4. The running time spent on the search.

Hints:

e You may choose to write one search function and give it the strategy as an argument.

1.2.1 Results to report

In addition to your code, report the results of your two functions applied to each city in Romania as indicated
in the table below. Report six total tables:

1. (7 x 3 points) Three (one for each search strategy) result table for TREE-SEARCH.

2. (7 x 3 points) Three (one for each search strategy) result table for GRAPH-SEARCH.

Uninformed search of your choice
City name | #nodes visited | Path to Bucharest | Total cost of path | CPU time
Arad
Bucharest

Vaslui
Zerind

Greedy Search
City name | #nodes visited | Path to Bucharest | Total cost of path | CPU time
Arad
Bucharest

Vaslui
Zerind

A* Search
City name | #nodes visited | Path to Bucharest | Total cost of path | CPU time
Arad
Bucharest

Vaslui
Zerind

1.2.2 Some indications
Follow the requirements below:

1. For GRAPH-SEARCH, modify the data structure of a city that you implemented in Section 1.1 to add
one more field visited, initialized to Nil. Use this attribute for loop control during search: when a
city is visited, set this field to T.

2. Create a new data structure to represent a node in the search tree. The structure should have attributes
that point to the structures of its parent (when applicable), its children (list), the city it represents.
Other attributes may be necessary, such as path value at the node.

3. Implement a function expand-node that takes a node in the search tree and generates its children,
which, for GRAPH-SEARCH, should correspond to cities not yet visited. It needs to generate one node
data-structure per child.

Implement a function evaluate-node that takes a node and a search strategy and returns the value
of the node (e.g., g(n), h(n) or f(n)).

Implement a function that takes a fringe (i.e., a list of nodes to be expanded) and returns the node
to expand. As a refinement, you can provide the name of the search strategy as an optional second
argument (check :key in the list of arguments of a function).

If you separate the implementation search strategy from the evaluation functions cleverly enough, you
may be able to use the same search function for all search strategies you implement.

Implement the search strategies iteratively, not recursively.

Declare a global variable *nnv* for storing the number of nodes visited. The search function should set
up its value and the function expand-node should increment this value at every expansion (technically,
every instantiation of a search-node structure).

Load the information about the cities from the file all-cities.lisp which is on the course website
(it is also acceptable to hard-code this information if you don’t want to parse a lisp file).

2 Sliding-Tile Puzzle (80 points)
The goal is to implement A* search for solving the 3x3 sliding-tile puzzle with the two admissible heuristics,
namely,
1. the displaced tile heuristics and
2. the Manhattan distance heuristics.
2.1 Requirements
1. (15 points) Implement a generator of random states, to be used to generate an initial and a goal state.
2. (2 x 8 points) Implement the two heuristics as functions that take a current state and a goal state and
compute the value of the heuristic as the estimate of the distance between the two states.
3. (20 points) Implement A* that
e takes as arguments an initial state, a goal state, and the name of a heuristic function and
e returns the list of moves (i.e., actions) of the empty tile from the initial state to the goal state,
the cost of the path found, and the CPU time.
4. Count the movement of each tile as utility cost.
5. (9 points) Generate 100 combinations of random initial and goal states (more if possible).
6. (2 x 10 points) Run A* with each heuristic on each combination initial and goal states, reporting the

following:

Displaced tile Manhattan Distance
Instance #NV | Path Cost | CPU time || #NV | Path Cost | CPU time

Combination 1

Combination 2

Combination 99
Combination 100

2.2 Indications

In contrast to the previous problem, you do not need to generate a state space. Use to the extent possible
the explanations and the mechanisms provided above for the Romanian Holidays and adapt them to your
needs.

1. Implement a state as a 2 dimensional array.
2. Implement a generator of random states, to be used to generate an initial and a goal state.

3. Implement a function that takes as input a state and computes the value of the heuristic function
(there are two of them).

4. Implement functions that correspond to the actions of moving the empty tile north, south, east and
west (similar to the Farmer’s dilemma).

5. Implement functions that determine whether a move is legal or not (similar to the Farmer’s dilemma).
A move north is not legal when the empty tile is in the first row.

Alert: The state space of this puzzle has two connected components. If the initial state and the goal state are
chosen from a different component, the puzzle instance is not solvable. To test whether or not an instance is
solvable, a simple test exists, see https://www.geeksforgeeks.org/check-instance-8-puzzle-solvable/.

