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Introduction to Artificial Intelligence

CSCE 476-876, Fall 2022

URL: cse.unl.edu/˜cse476 URL:

cse.unl.edu/˜choueiry/F22-476-876

Berthe Y. Choueiry (Shu-we-ri)

B
.Y

.
C

h
o
u
e
ir

y
1

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
1
9

O
c
t
o
b
e
r

1
9
,
2
0
2
2



✬✫

✩✪

Constraint Processing

• Constraint Satisfaction:

– Modeling and problem definition (Constraint Satisfaction

Problem, CSP)

– Algorithms for constraint propagation

– Algorithms for search

• Constraint Programming: Languages and tools

– logic-based

– object-oriented

– functional
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✬✫

✩✪

Courses on Constraint Processing

http://cse.unl.edu/˜choueiry/Constraint-Courses.html

• CSCE 421/821 Foundations of Constraint Processing

• CSCE 921 Advanced Constraint Processing
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✬✫

✩✪

Outline

• Problem definition and examples

• Solution techniques: search and constraint propagation

• Exploiting the structure

• Research directions
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✬✫

✩✪

What is this about?

Context: Solving a Kendoku Puzzle

Problem: You need to assign numbers to unmarked cells

Possibilities: You can choose any number between 1 and 5

Constraints: restrict the choices you can make

Unary: You have to respect predefined cells

Binary: No two cells in same row or column have the same value

Global: All the cells in each area must summ up to a given value.

You have choices, but are restricted by constraints

−→ Make the right decisions
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✬✫

✩✪

Constraint Satisfaction

Given

• A set of variables: 25 cells

• For each variable, a set of choices {1,2,3,4,5}

• A set of constraints that restrict the combinations of values the

variables can take at the same time

Questions

• Does a solution exist? classical decision problem

• How two or more solutions differ? How to change specific

choices without perturbing the solution?

• If there is no solution, what are the sources of conflicts?

Which constraints should be retracted?

• etc.
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✬✫

✩✪

Constraint Processing is about

• solving a decision problem

• while allowing the user to state arbitrary constraints in an

expressive way and

• providing concise and high-level feedback about alternatives

and conflicts

Power of Constraints Processing

• flexibility & expressiveness of representations

• interactivity, users can







relax

reinforce







constraints

Related areas: AI, OR, Algorithmic, DB, Prog. Languages, etc.
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✬✫

✩✪

Definition

Given P = (V ,D, C):

• V a set of variables

V = {V1, V2, . . . , Vn}

• D a set of variable domains (domain values)

D = {DV1
, DV2

, . . . , DVn
}

• C a set of constraints

CVa,Vb,...,Vi
= { (x, y, . . . , z)} ⊆ DVa

×DVb
× . . .×DVi

Query: can we find one value for each variable

such that all constraints are satisfied?

In general, NP-complete
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✬✫

✩✪

Terminology

• Instantiating a variable: Vi ← a where a ∈ DVi

• Variable-value pair (vvp)

• Partial assignment

• No good

• Constraint checking

• Consistent assignment

• Constrained optimization problem: Objective function
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✬✫

✩✪

Representation: Constraint graph

Given P = (V ,D, C)















V = {V1, V2, . . . , Vn}
D = {DV1

, DV2
, . . . , DVn

}
C set of constraints

CVi,Vj
= { (x, y)} ⊆ DVi

×DVj

Constraint graph

{ 1, 2, 3, 4 }

{ 3, 5, 7 }{ 3, 4, 9 }

{ 3, 6, 7 }

v2 > v4

V4

V2

v1+v3 < 9

V3

V1

v2 < v3 

v1 < v2
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✬✫

✩✪

Example I: Temporal reasoning

[ 5.... 18]

[ 4.... 15]

[ 1.... 10 ] B < C

A < B

B

A

2 < C - A < 5
C

−→ C-A ∈ [2, 5] is a constraint of bounded differences
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✬✫

✩✪

Example II: Map coloring

Using 3 colors (R, G, & B), color the US map such that no two

adjacent states do have the same color

{ red, green, blue }

{ red, green, blue }

{ red, green, blue }
{ red, green, blue }{ red, green, blue }

WY

NE

KS

OKNM

TX

LA

CO

UT

AZ

AR

Variables? Domains? Constraints?
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✬✫

✩✪

Domain types

Given P = (V ,D, C)















V = {V1, V2, . . . , Vn}
D = {DV1

, DV2
, . . . , DVn

}
C set of constraints

CVi,Vj
= { (x, y)} ⊆ DVi

×DVj

Domains:

−→ restricted to {0, 1}: Boolean CSPs

−→ Finite (discrete): enumeration techniques works

−→ Continuous: sophisticated algebraic techniques are needed

consistency techniques on domain bounds
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✬✫

✩✪

Constraint arity

Given P = (V ,D, C)















V = {V1, V2, . . . , Vn}
D = {DV1

, DV2
, . . . , DVn

}
C set of constraints

CVk,Vl,Vm
= { (x, y, z)} ⊆ DVk

×DVl
×DVm

Constraints: universal, unary, binary, ternary, . . ., global

Representation: Constraint network

V3

v1+v2+V4 < 10

v1+v3 < 9
v2 < v3 

v1 < v2V1 V2

v2 > v4

V4{ 3, 5, 7 }

{ 1, 2, 3, 4 } { 3, 6, 7 }

{ 3, 4, 9 }
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✬✫

✩✪

Constraint definition

Constraints can be defined

• Extensionally: all allowed tuples are listed

practical for defining arbitrary constraints

CV1,V2
= {(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)}

• Intensionally: when it is not practical (or even possible) to list

all tuples, define allowed tuples in intension.

CV1,V2
= {(x, y) |x ∈ DV1

, y ∈ DV2
, x 6= y}

→ Define types of common constraints, to be used repeatedly

Examples: Alldiff (a.k.a. mutex), Atmost, Cumulative,

Balance, etc.

Other types of constraints: linear constraints, nonlinear constraints,

constraints of bounded differences (e.g., in temporal reasoning), etc.
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✬✫

✩✪

Example III: Cryptarithmetic puzzles

DX1 = DX2 = DX3 = {0, 1}
DF = DT = DU = DV = DR = DO = [0, 9]

(a)

OWTF U R

(b)

+

F

T

T

O

W

W

U

O

O

R

X3 X1X2

O + O = R + 10 X1

X1 + W + W = U + 10 X2

X2 + T +T = O + 10 X3

X3 = F

Alldiff({F, D, U, V, R, O})

B
.Y

.
C

h
o
u
e
ir

y
16

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
1
9

O
c
t
o
b
e
r

1
9
,
2
0
2
2



✬✫

✩✪

How to solve a CSP?

Search!

1. Constructive, systematic search

2. Local search
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✬✫

✩✪

Incremental formulation: as a search problem

Initial state: empty assignment, all variables are unassigned

Successor function: a value is assigned to any unassigned

variable, provided that it does not conflict with previously

assigned variables (back-checking)

Goal test: The current assignment is complete (and consistent)

Path cost: a constant cost (e.g., 1) for every step, can be zero

— A solution is a complete, consistent assignment.

— Search tree has constant depth n (# of variables) → DFS!!

— However, path for reaching a solution is irrelevant

- Complete-state formulation is OK

- Solved with local search (ref. SAT)
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✬✫

✩✪

Systematic search

→ Starting from a root node

→ Consider all values for a variable V1

→ For every value for V1, consider all values for V2

→ etc..
S

v1 v4Var 1

Var 2

v3v2

For n variables, each of domain size d:

- Maximum depth? fixed!

- Maximum number of paths? size of search space, size of CSP
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✬✫

✩✪

Back-checking

Systematic search generates dn possibilities

Are all possible combinations acceptable?

S

v1 v4Var 1

Var 2

v3v2

S

v1 v4Var 1

Var 2

v3v2

→ Expand a partial solution only when consistent

−→ early pruning
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✬✫

✩✪

Before looking at search..

Consider

1. Importance of modeling/formulating

to control the size of the search space

2. Preprocessing: consistency filtering

to reduce size of search space
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✬

✫

✩

✪

Importance of modeling

N-queens: formulation 1

Variables?

Domains?

Size of CSP?

N-queens: formulation 2

variables?

domains?

size of csp?

B.Y. Choueiry 22 Instructor’s notes #19
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✬✫

✩✪

Constraint checking

−→ Constraint filtering, constraint checking, etc..

eliminate non-acceptable tuples prior to search

[ 5.... 18]

[ 4.... 15]

[ 1.... 10 ] B < C

A < B

B

A

2 < C - A < 5
C

2- A: [ 2 .. 10 ]
C: [ 6 .. 14 ]

3- B: [ 5 .. 13 ]

C:  [ 6 .. 15 ]
1- B: [ 5 .. 14 ]

Revise(Vi,Vj)

For every value x ∈ DVi

If no y ∈ DVj
is consistent with x Then DVi

← DVi
\ {x}
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✬✫

✩✪

In AIMA: Remove-Inconsistent-Values(Vi,Vj)

Revise (Vi,Vj)

1: revised← nil

2: for all x ∈ Dvi
do

3: for all y ∈ Dvj
do

4: if Check((Vi, x), (Vj , y)) then

5: Return(nil)

6: end if

7: end for

8: DVi
← DVi

\ {x}
9: revised← t

10: end for

11: Return(revised)
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✬✫

✩✪

Arc Consistency

−→ AC(CV1,V2
) = Revise(V1,V2) and Revise(V2,V1)

−→ CSP is AC when all constraints are AC.

−→ Algorithms: AC-1, AC-2, AC-3, . . ., AC-7 and back to AC-3

−→ AC-3: O(n2d3)
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✬✫

✩✪

AC-3 (csp)

1: Q← {(Vi, Vj) | CVi,Vj
exists}

2: while Q 6= ∅ do

3: (Vi, Vj)← Pop(Q)

4: if Revise(Vi, Vj) then

5: if Domain(Vi) = ∅ then

6: Return(nil)

7: else

8: for all Vk | Vk 6= Vj and CVi,Vk
exists do

9: Push((Vk,Vi),Q)

10: end for

11: end if

12: end if

13: end while

14: Return(csp)
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✬✫

✩✪

Warning: arc-consistency does not solve the problem

Example: 3-coloring K4

• In general, constraint propagation helps, but does not solve the

problem

• As long as constraint checking is affordable (i.e., cost remains

negligible vis-a-vis cost of search), it is advantageous to apply

AC-3 before search

B
.Y

.
C

h
o
u
e
ir

y
27

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
1
9

O
c
t
o
b
e
r

1
9
,
2
0
2
2



✬✫

✩✪

Levels of consistency

Node consistency: every value in the domain of a variable is

consistent with the unary constraints defined on the variable

Arc-consistency: For any value in the domain of any variable,

there is at least one value in the domain of any other variable

with which it is consistent.

3-consistency: For any two consistent values in the domains of

any two variables, there is at least one value in the domain of

any third variable with which they are consistent.

k-consistency: (k ≤ n)

For any (k-1) consistent values in the domains of any (k-1)

variables, there is at least one value in the domain of any kth

variable with which they are consistent.

Strong k-consistency: k-consistency ∀i ≤ k
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✬✫

✩✪

Chronological backtracking

What if only one solution is needed?

S

v1 v4Var 1

Var 2

v3v2 Var 1 v1 v2

S

−→ Depth-first search & chronological backtracking

−→ Terms: current variable Vc, past variables Vp, future variables

Vf , current path

→ DFS: soundness? completeness?
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✬✫

✩✪

Example of BT

Western
Australia

Northern
Territory

South
Australia

Queensland

New

South

Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

WA=red WA=blueWA=green

WA=red
NT=blue

WA=red
NT=green

WA=red
NT=green
Q=red

WA=red
NT=green
Q=blue
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✬✫

✩✪

Backtrack(ing) search (BT)

Refer to algorithm Backtracking-Search

• Implementation: Backtracking-Search

Careful, recursive, do not implement!!

Use [Prosser 93] for iterative versions

• Variable ordering heuristic: Select-Unassigned-Variable

• Value ordering heuristic: Order-Domain-Values
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✬✫

✩✪

Improving BT

General purpose methods for:

1. Variable, value ordering

2. Improving backtracking: intelligent backtracking avoids

repeating failure

3. Look-ahead techniques: constraint propagation as

instantiations are made
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✬✫

✩✪

Ordering heuristics

Which variable to expand first?

Exp: V1, V2, DV1
= {a, b, c, d},DV2

= {a, b}

Sol: {(V1 = c), (V2 = a)} and {(V1 = c), (V2 = b)}

s

c

aV2 b a b a b

ba d
V1

V1

s

V2 ba

ba c d

Heuristics:







most constrained variable first (reduce branching factor)

most promising value first (find quickly first solution)
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✬✫

✩✪

Examples of ordering heuristics

For variables:

• least domain (LD), aka minimum remaining values (MRV

• degree

• ratio of domain size to degree (DD)

• width, promise, etc. [Tsang, Chapter 6]

For values:

• min-conflict [Minton, 92]

• promise [Geelen, 94], etc.

Strategies for







variable ordering

value ordering







could be







static

dynamic
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✬✫

✩✪

Intelligent backtracking

What if the reason for failure was higher up in the tree?

Backtrack to source of conflict!!

Var 1 v1 v2

S S

v1 v2Var 1

→ Backjumping, conflict-directed backjumping, etc.

→ Additional data structures that keep track of failure encountered

during back-checking [Prosser, 93]
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✬✫

✩✪

Look-ahead strategies: partial or full

As instantiations are made, remove the values from the domain of

future variables that are not consistent with the current path

Terminology

• Vc is the current variable

• Vf is the set of future variables, Vf is a future variable

• Instantiate Vc, update the domains of (some) future variables

Strategies

• Forward checking (FC): partial look-ahead

• Directional arc-consistency checking (DAC): partial look-ahead

• Maintaining Arc-Consistency (MAC): full look-ahead

→ Special data structures can be used to refresh filtered domains

upon backtracking [Prosser, 93]
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✬✫

✩✪

Forward checking (FC)

→ Apply Revise(Vf , Vc) to the each variable Vf connected to Vc

→ In AIMA, it is Remove-Inconsistent-Values(Vf , Vc)

Procedure:

• Instantiate Vc

• Apply Revise(Vf , Vc) to the each variable Vf

B
.Y

.
C

h
o
u
e
ir

y
37

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
1
9

O
c
t
o
b
e
r

1
9
,
2
0
2
2



✬✫

✩✪

Directional Arc-Consistency (DAC)

→ Repeat forward checking on all Vf ∈ Vf while respecting order

→ Applicable under static ordering

Procedure:

• Choose a variable ordering

• Instantiate Vc

• Apply FC to Vc

• Move to next variable Vf in ordering, and apply FC to Vf .

Repeat for all variables in Vf in the specified order.
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✬✫

✩✪

Maintaining Arc-Consistency (MAC)

→ Maintain AC in the subproblem induced by Vf ∪ {Vc}
→ In practice, useful when problem has few, tight constraints

Procedure:

• Instantiate Vc

• Apply AC-3(Vf ∪ {Vc})
Every constraint revision uses two operations: Revise(Va, Vb)

and Revise(Vb, Va)

Updates domains of all variables in subproblems
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✬

✫

✩

✪

Search (V) Forward checking

Why not filter right away effects of an action?

B.Y. Choueiry 40 Instructor’s notes #19
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✬✫

✩✪

CSP: a decision problem (NP-complete)

1- Modeling:

— abstraction and reformulation

2- Preprocessing techniques:

— eliminate non-acceptable tuples prior to search

3- Search:

— potentially dn paths of fixed length

— chronological backtracking

— variable/value ordering heuristics

— intelligent backtracking

4- Search ‘hybrids’:

— Mixing constraint propagation with search: FC, DAC, MAC
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✬✫

✩✪

Non-systematic search (i.e., local search)

• Methodology: Iterative repair, local search: modifies a global

but inconsistent solution to decrease the number of violated

constraints

• Example: Min-Conflicts algorithm in Fig 6.8, page 198.

Choose (randomly) a variable in a broken constraint, and

change its value using the min-conflict heuristic (which is a

value ordering heuristic)

• Other examples: Hill climbing, taboo search, simulated

annealing, etc.

−→ Anytime algorithm

−→ Strategies to avoid getting trapped: RandomWalk

−→ Strategies to recover: Break-Out, Random restart, etc.

−→ Incomplete & not sound
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✬✫

✩✪

Exploiting structure: example of deep analysis

• Tree-structured CSP

• Cycle-cutset method

B
.Y

.
C

h
o
u
e
ir

y
43

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
1
9

O
c
t
o
b
e
r

1
9
,
2
0
2
2



✬✫

✩✪

Tree-structured CSP

Any tree-structured CSP can be solved in time linear in the number

of variables.

• Apply arc-consistency

Directional arc-consistency is enough: starting from the leaves,

revise a parent given the domain of a child; keep going up to

the root

• Proceed, instantiating the variables from the root to the leaves

• The assignment can be done in a backtrack-free manner

• Runs in O(nd2), n is #variables and d domain size.
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✬✫

✩✪

Cycle-cutset method

1. Identify a cycle cutset S in the CSP (nodes that when removed

yield a tree), the remaining variables form the set T

2. Find a solution to the variables in S (S is smaller than initial

problem)

3. For every consistent solution for variables in S:

• Apply DAC from S to T

• If no domain is wiped out, solve T (quick) and you have a

solution to the CSP

Note:

• For a cycle cutset |S| = c, time is O(dc.(n− c)d2). If graph is

nearly a tree, c is small, and savings are large. In the

worst-case, c = n− 2 :–(.

• Finding the smallest cutset is NP-hard :–(
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✬✫

✩✪

Tree decomposition (tree-clustering)

Cluster the nodes of the CSP into subproblems, which are

organized in a tree structure:

• Every variable appears in at least one subproblem

• If 2 variables are connected by a constraint, they must appear

together (along with the constraint) in at least one subproblem

• If a variable appears in 2 subproblems, it must appear in every

suproblem along the path between the 2 subproblems.

WA

NT
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V

T

T
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✬✫

✩✪

Solving the tree decomposition (tree-clustering)

• Each subproblem is a meta-variable, whose domain is the set of

all solutions to the subproblem.

• Choose a subproblem, find all its solutions.

• Solve the constraints connecting the subproblem and its

neighbors (common variables must agree).

• Repeat the process from a node to its descendant.

• Complexity depends on w, the tree width of the decomposition

= number of nodes in largest subproblem - 1. It is O(ndw+1).

• Thus, CSPs with a constraint graph of bounded w can be

solved in polynomial time.

• Finding the decomposition with minimal tree width in

NP-hard..
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✬✫

✩✪

Research directions

Preceding (i.e., search, backtrack, iterative repair, V/V/ordering,

consistency checking, decomposition, symmetries & interchangeability,

deep analysis) + ...

Evaluation of algorithms:

worst-case analysis vs. empirical studies

random problems?

Cross-fertilization:

SAT, DB, mathematical programming,

interval mathematics, planning, etc.

Modeling & Reformulation

Multi agents:

Distribution and negotiation

→ decomposition & alliance formation
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✬✫

✩✪

CSP in a nutshell (I)

Solution technique: Search







constructive

iterative repair

Enhancing search:



















































intelligent backtrack

variable/value ordering

consistency checking

hybrid search

♥ symmetries

♥ decomposition
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✬✫

✩✪

CSP in a nutshell (II)

Deep analysis: exploit problem structure















♥ graph topology

♥ constraint semantics

phase transition

Research:



















































k-ary constraints, soft constraints

continuous vs. finite domains

evaluation of algorithms (empirical)

cross-fertilization (mathematical program.)

♥ reformulation and approximation

♥ architectures (multi-agent, negotiation)
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✬✫

✩✪

Constraint Logic Programming (CLP)

A merger of√
Constraint solving

−→ Logic Programming, mostly Horn clauses (e.g., Prolog)

Building blocks

• Constraint: primitives but also user-defined

- cumulative/capacity (linear ineq), MUTEX, cycle, etc.

- domain: Booleans, natural/rational/real numbers, finite

• Rules (declarative): a statement is a conjunction of constraints

and is tested for satisfiability before execution proceeds further

• Mechanisms: satisfiability, entailment, delaying constraints
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✬✫

✩✪

Constraint Processing Techniques are the basis of new

languages:

Were you to ask me which programming paradigm is likely to

gain most in commercial significance over the next 5 years I’d

have to pick Constraint Logic Programming (CLP), even though

it’s perhaps currently one of the least known and understood.

That’s because CLP has the power to tackle those difficult

combinatorial problems encountered for instance in job

scheduling, timetabling, and routing which stretch conventional

programming techniques beyond their breaking point.

Though CLP is still the subject of intensive research, it’s

already being used by large corporations such as manufacturers

Michelin and Dassault, the French railway authority SNCF,

airlines Swissair, SAS and Cathay Pacific, and Hong Kong

International Terminals, the world’s largest privately-owned

container terminal.

Byte, Dick Pountain
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