Title: Intelligent Agents AIMA: Chapter 2

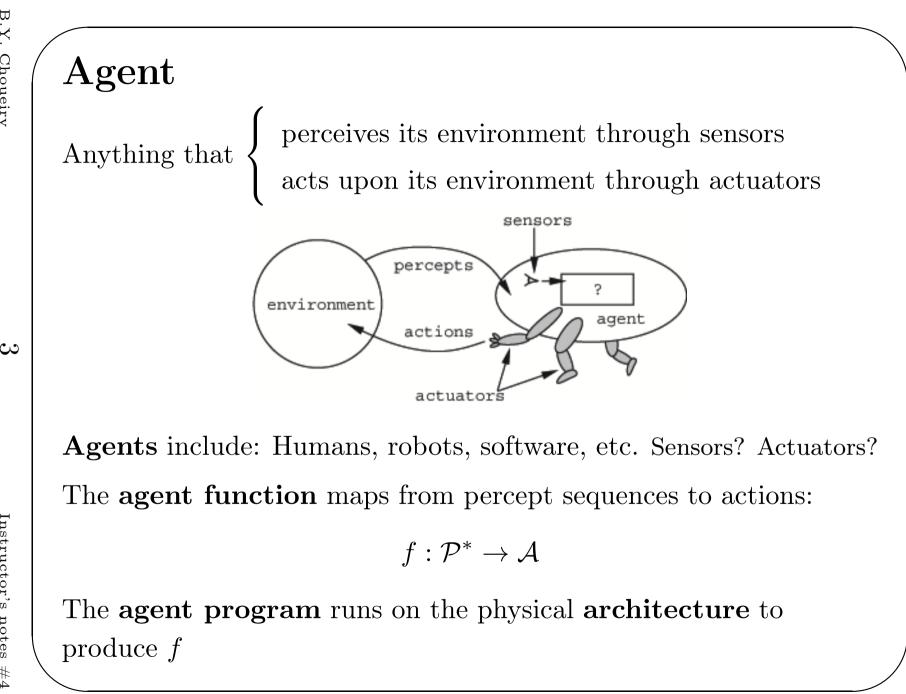
> Introduction to Artificial Intelligence CSCE 476-876, Fall 2022 URL: www.cse.unl.edu/~choueiry/F22-476-876

> > Berthe Y. Choueiry (Shu-we-ri) (402)472-5444

 \vdash

Intelligent Agents

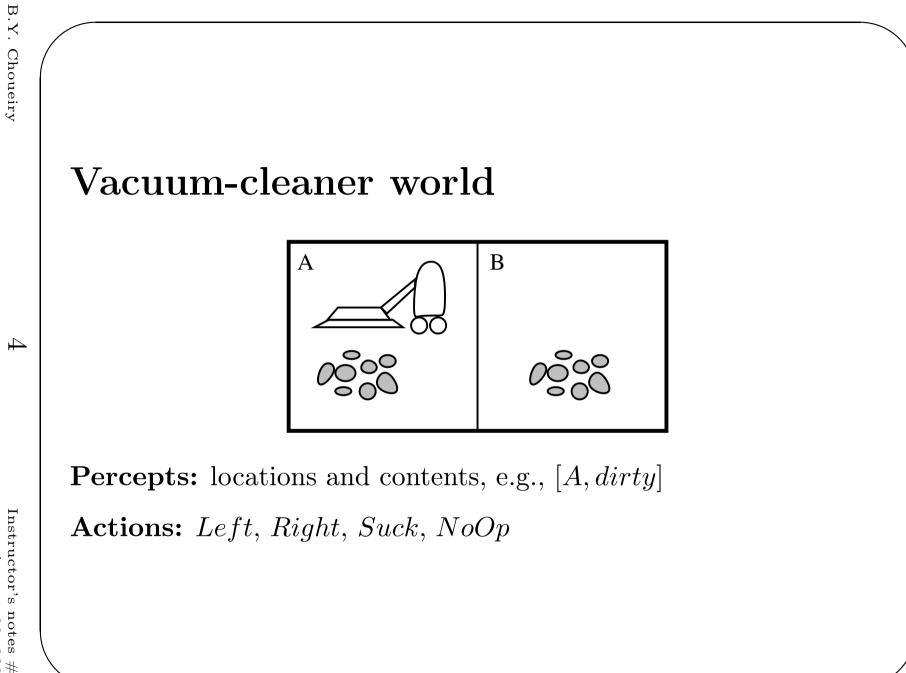
- 1. Agents and environments
- 2. Rationality


3. PEAS

Specifying the task environment:

Performance measure, Environment, Actuators, Sensors

- 4. Types of environments
- 5. Types of Intelligent Agents


 \mathbf{N}

В.Ү. Choueiry

ಲು

Instructor's notes #4 August 29, 2022 August

A Vacuum-cleaner Agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Clean]	Right

CT

Instructor's notes #4 August 29, 2022

Function Reflex-Vaccuum-Agent ([location, status]]) returns an action if status = Dirty then return Suckelse if location = A then return Rightelse if location = B then return Left

Goal of AI

Build <u>rational</u> agents.

Rational = ?

What is "rational" depends on:

- 1. Performance measures (how, when)
- 2. The agents' prior knowledge of the environment
- 3. The actions the agent can perform
- 4. Percept sequence to date (history): everything agent has perceived so far

Performance meaure

Fixed **performance measure** evaluates the **environment** sequence

-7

- one point per square cleaned up in time t
- point per clean square per time step, minus one per move?
- penalize for > k dirty squares?

Rationality

A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date

Rational \neq omniscient, clairvoyant Rationality maximizes expected performance Perfection maximizes actual performance

Rational \implies exploration, learning, autonomy

After a sufficient experience of its environment, behavior of a rational agents becomes effectively independent of prior knowledge.

 ∞

PEAS

To design a rational agent, we must specify the ${\bf task}\ {\bf environment}$

Performance measure?

Environment?

Actuators?

Sensors?

Instructor's notes #4 August 29, 2022

Consider, e.g., the task of designing an automated taxi..

 $\mathbf{0}$

PEAS: Automated taxi

Performance measure: safety, destination, profits, legality, comfort, . . .

Environment: US urban streets, freeways, traffic, pedestrians, stray animals, weather, ...

Actuators: steering, accelerator, brake, horn, speaker/display, \dots

Sensors: video, accelerometers, gauges, engine sensors, keyboard, GPS, ...

Environment (1)

- 1. Fully Observable vs. Partially Observable
- 2. Deterministic vs. stochastic
- 3. Episodic vs. sequential
- 4. Static vs. dynamic
- 5. Discrete vs. continuous
- 6. Single agent vs. multiagent

Environment (2)

Fully/Partially Observable: sensors can detect <u>all</u> aspects of the world Effectively fully observable: relevant aspects

Deterministic vs. stochastic: from the agent's view point Next state determined by current state and agents' actions Partially observable + deterministic appears stochastic

Episodic vs. sequential: Agent's experience divided into atomic episodes; subsequent episodes do not depend on actions in previous episodes

Environment (3)

Static vs. dynamic:

Dynamic: Environment changes while agent is deliberating Semidynamic: environment static, performance scores dynamic

Discrete vs. continuous: Finite number of precepts, actions

Single agent vs. multiagent: B's behavior maximizes a performance measure whose value depends on A's behavior. Cooperative, competitive, communication.

Chess? Taxi driving?

hardest case?

Environment (4)

Hardest case: patially observable, stochastic, sequential, dynamic, continuous, and multiagent

	Solitaire	Backgammon	Internet shopping	Taxi
Observable				
Deterministic				
Episodic				
Static				
Discrete				
Single-agent				

Answers depend on how you define/interpret the case

Episodic: chess tournament

Environment types

	Solitaire	Backgammon	Internet shopping	Taxi
Observable	Yes	Yes	No	No
Deterministic	Yes	No	Partly	No
Episodic	No	No	No	No
Static	Yes	Semi	Semi	No
Discrete	Yes	Yes	Yes	No
Single-agent	Yes	No	Yes	No
			(except auctions)	

The environment type largely determines the agent design

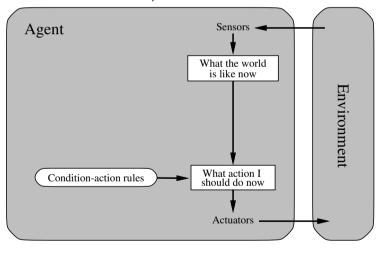
The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent

15

Types of Agents

Four, in order of increasing generality:

- 1. Simple reflex agents
- 2. Simple reflex agents with state
- 3. Goal-based agents
- 4. Utility-based agents
- 5. Learning agents

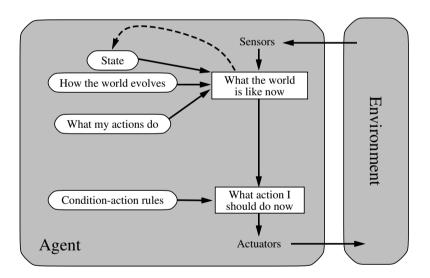

All these can be turned into learning agents.

16

Simple reflex agents

• Simple look-up table, mapping percepts to actions, is out of question (too large, too expensive to build)

• Many situations can be summarized by condition-action rules (humans: learned responses, innate reflexes)

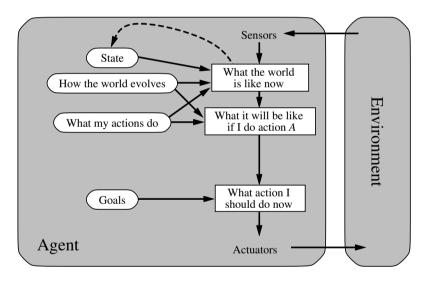


Rectangles: agent's internal state Ovals: background information Implementation: easy; Applicability: narrow

17

Simple reflex agents with state

- Sensory information alone is not sufficient
- Need to keep track of how the world evolves (evolution: independently of agent, or caused by agent's actions)

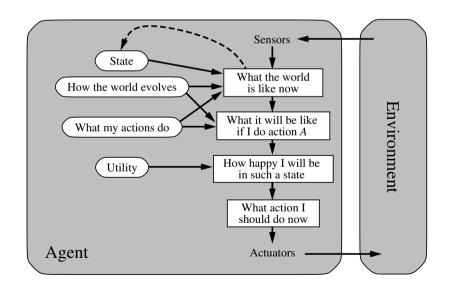


How the world evolved: model-based agent

18

Goal-based agents

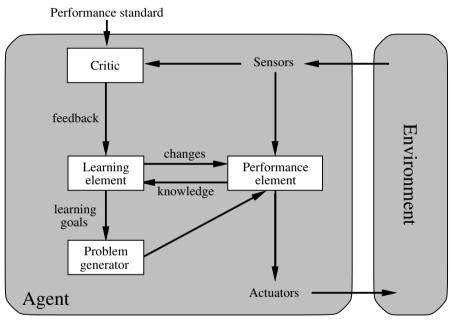
- \bullet State & actions don't tell <u>where</u> to go
- Need goals to build sequences of actions (planning)



Goal-based: uses the same rules for different goals Reflex: will need a complete set of rules for each goal

19

Utility-based agents


- Several action sequences to achieve some goal (binary process)
- \bullet Need to <u>select</u> among actions & sequences. Preferences.
- Utility: State \rightarrow real number (express degree of satisfaction, specify trade-offs between conflicting goal)

20

Learning agents

Agent operates in an initially unknown environment, and becomes more competent than its initial knowledge alone might allow

21

Instructor's notes #4 August 29, 2022

Learning: process of modification of each component of the agent to bring the components into closer agreement with the available feedback information, thus improving overall performance of the agent.