
CSCE476/876 Fall 2021

Homework 6

Assigned on: Friday, October 22, 2021.

Due: Friday, October 29, 2021. Monday, November 8, 2021.

Points: 120 points + up to 20 bonus

Exercises: AIMA exercises are available online: https://aimacode.github.io/aima-exercises

Contents

1 SAT Modeling (15 Points) 2
1.1 Scenario A (5 Points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Scenario B (5 Points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scenario C (5 Points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Chapter 7, Exercise 1, Source: AIMA online site. (16 points) 3

3 Chapter 7, Exercise 2, Source: AIMA online site. (5 points) 3

4 Chapter 7, Exercise 9, Source: AIMA online site. (6 points) 3

5 Truth Tables (8 points) 3

6 Chapter 7, Exercise 12, Source: AIMA online site. (16 points) 3

7 Logical Equivalences (8 points) 4

8 Chapter 7, Exercise 28, Source: AIMA online site. (18 points + 20 bonus) 4

9 Proofs (28 points) 4

Alert: If you submit your homework handwritten, it must be absolutely neat or it will not be corrected. If
you type your homework (preferable), submit using webhandin.

1



1 SAT Modeling (15 Points)

For each of the following scenarios, write a CNF formula to describe the scenario and complete the following
four steps:

1. First state the propositions and what they represent.

2. State the sentence.

3. Explain the meaning of the clauses.

4. Is the sentence satisfiable? Explain why or why not.

1.1 Scenario A (5 Points)

Write a CNF formula to model the following scenario and complete the four steps from above:

1. There are four choices of desserts: ice cream, fruit bowl, cake, pie.

2. Exactly one dessert must be selected (i.e., one and only one).

1.2 Scenario B (5 Points)

Write a CNF formula to model the following scenario and complete the four steps from above:

1. Damon, Enrique, and Lois need to complete a paper and a presentation for a class.

2. To complete each task, they need to select a day to meet during the week (Mon, Tue, Wed, Thu, Fri).

3. Damon cannot meet on Monday. Further, he wants to complete the paper before the presentation and
not both on the same day.

4. Enrique can meet any day but cannot meet on two consecutive days.

5. Lois wants to complete the presentation on or before Wednesday.

1.3 Scenario C (5 Points)

Write a CNF formula to model the following scenario and complete the four steps from above:

1. The four states (NE, IA, KS, MO) on the map shown in Figure 1 must be colored using three colors:
red, green, and blue.

NE IA

KS MO

Figure 1: Four states (NE, IA, KS, MO)

2. Each state must be colored with exactly one color.

3. Adjacent states (i.e., states sharing a border line) cannot have the same color.
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2 Chapter 7, Exercise 1, Source: AIMA online site. (16 points)

Suppose the agent has progressed to the point shown in Figure 7.4(a), Page 213, having perceived nothing
in [1,1], a breeze in [2,1], and a stench in [1,2], and is now concerned with the contents of [1,3], [2,2], and
[3,1]. Each of these can contain a pit, and at most one can contain a wumpus. Following the example of
Figure 7.5, construct the set of possible worlds. (You should find 32 of them.) Mark the worlds in which the
KB is true and those in which each of the following sentences is true:

α2 = “There is no pit in [2,2].”

α3 = “There is a wumpus in [1,3].”

Hence show that KB |= α2 and KB |= α3.

3 Chapter 7, Exercise 2, Source: AIMA online site. (5 points)

(Adapted from Barwise and Etchemendy (1993).) Given the following, can you prove that the unicorn is
mythical? How about magical? Horned?

If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal
mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is
magical if it is horned.

4 Chapter 7, Exercise 9, Source: AIMA online site. (6 points)

Consider a vocabulary with only four propositions, A, B, C, and D. How many models are there for the
following sentences?

1. B ∨ C.

2. ¬A ∨ ¬B ∨ ¬C ∨ ¬D.

3. (A =⇒ B) ∧A ∧ ¬B ∧ C ∧D.

5 Truth Tables (8 points)

Use truth tables to show that each of the following is a tautology.

1. (p ∧ q)→ ¬(¬p ∨ ¬q)

2. [Mary ∧ (Mary → Susy)]→ Susy

3. α→ [β → (α ∧ β)]

4. (a→ b)→ [(b→ c)→ (a→ c)]

6 Chapter 7, Exercise 12, Source: AIMA online site. (16 points)

Decide whether each of the following sentences is valid, unsatisfiable, or neither. Verify your decisions using
truth tables or the equivalence rules of Figure 7.11, Page 223).

1. Smoke =⇒ Smoke

2. Smoke =⇒ Fire

3. (Smoke =⇒ Fire) =⇒ (¬Smoke =⇒ ¬Fire)
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4. Smoke ∨ Fire ∨ ¬Fire

5. ((Smoke ∧Heat) =⇒ Fire)⇔ ((Smoke =⇒ Fire) ∨ (Heat =⇒ Fire))

6. Big ∨Dumb ∨ (Big =⇒ Dumb)

7. (Big ∧Dumb) ∨ ¬Dumb

Only 2, 3, 4, 5, 6, and 7.

7 Logical Equivalences (8 points)

Using a method of your choice, verify:

1. (α→ β) ≡ (¬β → ¬α) contraposition

2. ¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

3. (α ∧ (β ∨ γ)) ≡ ((α ∧ γ) ∨ (α ∧ β)) distributivity of ∧ over ∨

8 Chapter 7, Exercise 28, Source: AIMA online site. (18 points
+ 20 bonus)

Parts 1, 2, and 3 below are required. Parts 4, 5, and 6 are bonus.
Minesweeper, the well-known computer game, is closely related to the wumpus world. A minesweeper

world is a rectangular grid of N squares with M invisible mines scattered among them. Any square may be
probed by the agent; instant death follows if a mine is probed. Minesweeper indicates the presence of mines
by revealing, in each probed square, the number of mines that are directly or diagonally adjacent. The goal
is to probe every unmined square.

1. (Required) Let Xi,j be true iff square [i, j] contains a mine. Write down the assertion that exactly two
mines are adjacent to [1,1] as a sentence involving some logical combination of Xi,j propositions.

2. (Required) Generalize your assertion from (a) by explaining how to construct a CNF sentence asserting
that k of n neighbors contain mines.

3. (Required) Explain precisely how an agent can use DPLL to prove that a given square does (or does
not) contain a mine, ignoring the global constraint that there are exactly M mines in all.

4. (Bonus) Suppose that the global constraint is constructed from your method from part (b). How
does the number of clauses depend on M and N? Suggest a way to modify DPLL so that the global
constraint does not need to be represented explicitly.

5. (Bonus) Are any conclusions derived by the method in part (c) invalidated when the global constraint
is taken into account?

6. (Bonus) Give examples of configurations of probe values that induce long-range dependencies such that
the contents of a given unprobed square would give information about the contents of a far-distant
square. (Hint: consider an N × 1 board.)

9 Proofs (28 points)

Give the explantions of each step if the steps are given, and give both the explanation and step if they are
not.

• If q ∧ (r ∧ p), t→ v, v → ¬p, then ¬t ∧ r.
Proof Explanations
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1. q ∧ (r ∧ p) Given

2. t→ v Given

3. v → ¬p Given

4. t→ ¬p
5. (r ∧ p)
6. r

7. p

8. ¬¬p
9. ¬t

10. ¬t ∧ r

• If p→ (q ∧ r), q → s, and r → t, then p→ (s ∧ t).
Proof Explanations

1.

2.

3.

4.

5.

6.

7.

• Prove by contradiction.

If ¬(¬p ∧ q), p→ (¬t ∨ r), q, and t, then r.

Proof Explanations

1. ¬(¬p ∧ q) Given

2. p→ (¬t ∨ r) Given

3. q Given

4. t Given

5. ¬r Negation of Conclusion

6.

7.

8.

9.

10.

11.

12.
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