
CSCE476/876 Fall 2021

Homework 2: Programming Assignment (Lisp Version)
Missionaries & Cannibals

Assigned on: Friday, September 10th, 2021

Due: Monday, September 20th, 2021

Contents
1 Getting started with Emacs and Common Lisp 1

2 Useful functions 3
2.1 Find (1 point) . 3
2.2 List iteration (1 point) . 4
2.3 Exify (2 points) . 4
2.4 Count occurrences (3 points) . 4
2.5 Dot Product (3 points) . 4
2.6 X-product (5 points) . 4
2.7 Cartesian Product (5 points) . 5
2.8 Data Structures in LISP (5 points) . 5

3 Allen’s Time Relations (20 points, Lisp bonus 4 points) 5

4 Missionaries & Cannibals puzzle (60 points, Lisp bonus 6 points) 7

The goal of this assignment is to give students wishing to learn and use Common LISP an
introduction to the language and to bolster understanding of the Farmer’s Dilemma problem by
extending its solution to the Missionaries and Cannibals puzzle. This homework is structured as
follows:

• Section 1 gives an overview of using and navigating Emacs and using Emacs to write Lisp
code. (0 points)

• Section 2 offers a few exercises that will likely be helpful when implementing your solution
to the Missionaries and Cannibals problem. (Bonus 25 points)

• Section 3 introduces Allen’s time relations. (20 points, Lisp bonus 4 points)

• Section 4 is the Missionaries and Cannibals puzzle itself. (60 points, Lisp bonus 6 points)

1

1 Getting started with Emacs and Common Lisp
Emacs is more than a simple (and powerful) editor: it provides you with a terrific environment for
running a Common Lisp interpreter. Emacs may seem a little confusing at the beginning, but your
efforts will quickly pay off.

1. Carefully follow the instructions provided during recitation for setting up your environment,
then conscientiously go through the Emacs tutorial:

http://csce.unl.edu/∼choueiry/emacs-tutorial.txt

2. Check out the key-stroke accelerators provided in
http://cse.unl.edu/∼choueiry/emacs-lisp.html .

Open an Emacs buffer, create a file my-test.lisp, write a Lisp function, and test it.
In particular, load a file (C-x C-f), check how TAB and the Space bar achieve completion
of commands and file names, interrupt a command (C-g), delete a line in a buffer (C-k),
move forward and backward in the buffer (C-f, C-b, M-f, M-b, etc.), save the modifica-
tions in the buffer to the file (C-x C-f), check the message in the mini buffer), kill an open
buffer (C-x k)

3. Start a Lisp interpreter in Emacs by typing M-x fi:common-lisp (check out comple-
tion with the space bar by typing M-x fi:com<space-bar>). Answer yes by typing
<return> to all questions asked in the mini-buffer (until you learn to do otherwise). Now
you should have a prompt sign of the Lisp interpreter. This is a loop that reads whatever you
type in and evaluates it as a Lisp expression as soon as you hit the carriage return. Prac-
tice your knowledge of Emacs and interactions with the Lisp interpretor by executing all the
instructions in Chapter 2, 3, and 4 of LWH. In particular,

• Test the functions car, cdr, cadr, cdar, first, length which operate on a list.

• Test cons, append and list and note the differences between them with respect to
their input and output.

• Test push, pop, pushnew, delete and remove and note whether or not they are
destructive.

• Test unary predicates atom, listp, consp, null, evenp, oddp, etc. on atoms,
numbers, lists, NIL and T as input.

• Test the binary predicate =. The test eq, eql and equal. For instance, define: (setf
ls1 ’(a b c)) and (setf ls2 ’(b c)). Now, Test:
(eq (cdr ls1) ls2) and (equal (cdr ls1) ls2). What do you con-
clude?

• Read about and test the constructs if, when, cond, do, do*, dolist, dotimes,
mapcar, find, reduce (my absolute favorite), some, every,

2

• Read about and test the functions on sets (as lists): intersection, union, set-difference,
member, subseteq, adjoin.

• mapcar is a very useful function that will make the dot-product, x-product, and Carte-
sian Product very simple to do. mapcar is used in the form (literally taken from Guy
Steele’s Common Lisp page171):

mapcar function list &rest more-lists

mapcar operates on successive elements of the lists. First the function is applied to
the car of each list, then to the cadr of each list, and so on. The value returned by
mapcar is a list of the results of the successive calls to the function. For example:

(mapcar #’abs ’(3 -4 2 -5 -6))⇒ (3 4 2 5 6)
(mapcar #’+ ’(1 2 3) ’(1 2 3))⇒ (1 4 6)

4. Save some of the functions you have written in the file my-test.lisp. Exit Lisp by typing
:exit in the Lisp interpreter and start Lisp again typing M-x fi:com<space-bar>.
You can load the functions you have written in my-test.lisp in the Lisp environment
by typing in your lisp buffer:

(load "<path>/my-test.lisp")
Emacs provides also some quick commands: :ld ˜/<path>/my-test.lisp. To
have a list of all the abbreviated commands provided by emacs, type in your Lisp buffer
help. Note that all abbreviated commands start with :.

5. The stepper of ACL works best on compiled code, and when you stick to the following sce-
nario. First, compile your file and load the compiled filed. Then, type in the *common-lisp*
buffer in Emacs: :step ’<name of the function to step through>. Then
type the function call: (<name of the function to step through> <arg1>
<arg2> etc.). To stop the stepper, just type: :step.

6. Use the time and space profiler of Composer to improve your code. Use the Lisp function
time to evaluate the cost of your code (time and space). You may want to make sure to do
the right DECLARATIONS for optimizing your code for speed (check a Lisp manual), etc.

7. Exit Lisp with :ex and quit emacs C-x C-c.

Now, it is time to jump into the fire! Do not hesitate to ask the TA and RAs for help.

2 Useful functions
For each of the problems, create a separate lisp file. Name them problem1.lisp, problem2.lisp,
and so on. Store all of your work on a given problem in the same file. When required to define
several functions in a given problem, put them all in the same file.

3

2.1 Find (1 point)
Common Lisp has a built-in function called find, which is called with the syntax

(find element list)
and will return nil if the element is not found in the list. If, on the other hand, the element is
found in the list, the function will simply return that element. For example, (find ’b ’(a b c d))
will return B. Observe that (find ’b ’(a b c a b c)) also returns B. Modify the my-member-
functions that you wrote for the above problem to duplicate the built-in find function. This is a
very simple task.

1. Create a function (my-find-cond element list) that uses recursion.

2. Create a function (my-find-do element list) that uses iteration.

2.2 List iteration (1 point)
The goal of this exercise is to make you use various constructs of Common Lisp to iterate over the
elements of list. You are asked to write a function double-xx that takes as input a list of numbers
such as ’(3 22 5.2 34) and returns a list of “doubled-up” numbers ’(6 44 10.4 68).

1. Write double-mapcar using mapcar.

2. Write double-dolist using dolist.

3. Write double-do using do.

4. Write double-recursive using cond and recursive calls.

2.3 Exify (2 points)
Write a recursive function exify that takes a list as input and returns a list in which all non-nil
elements are replaced by the atom X.
Test it first on: (exify ’(1 hello 3 foo 0 nil bar)).
It should return: (X X X X X NIL X).
Then test it on: (exify ’(1 (hello (3 nil (foo)) 0 (nil)) (((bar))))).
It should return: (X (X (X NIL (X)) X (NIL)) (((X)))).

2.4 Count occurrences (3 points)
Write a recursive function count-anywhere that takes an atom and an arbitrary nested list
as input and counts the number of times the atom occurs anywhere within the list. Example
(count-anywhere ’a ’(a (b (a) (c a)) a)) returns 4.

4

2.5 Dot Product (3 points)
Write a function that computes the dot product of two sequences of numbers represented as lists.
Assume that the two lists given as input have the same length. The dot product is computed by
multiplying the corresponding elements and then adding up the resulting product. Example:

(dot-product ’(10 20) ’(3 4))) = 110
(dot-product ’(1 2 4 5) ’(3 4 3 4)) = 43

2.6 X-product (5 points)
Write a function that takes a function name and two lists and returns the x-product defined by ap-
plying the function on the elements of the lists at the same position. Example:
(x-product #’+ ’(1 2 3) ’(10 20 30)) returns (11 12 13 21 22 23 31 32 33)
and
(x-product #’list ’(1 2 3) ’(a b c))
returns ((1 A) (2 A) (3 A) (1 B) (2 B) (3 B) (1 C) (2 C) (3 C))
Note: The terminology used above (i.e., dot, x-, Cartesian product) is not a strict one.

2.7 Cartesian Product (5 points)
Write a function that takes a list of any number of lists and return the Cartesian product:
(k-product ’((a b c) (1 2 3)))
returns: ((A 1) (A 2) (A 3) (B 1) (B 2) (B 3) (C 1) (C 2) (C 3)) and
(k-product ’((a b) (1 2 3) (x y)))
returns: ((A 1 X) (A 1 Y) (A 2 X) (A 2 Y) (A 3 X) (A 3 Y)

(B 1 X) (B 1 Y) (B 2 X) (B 2 Y) (B 3 X) (B 3 Y))

2.8 Data Structures in LISP (5 points)
• Using defstruct create the data type person, with fields for a person’s name, age, and

list of pointers the structures of the siblings of the person.

• Create structures for Bob age 21, Susan age 18, and Frank age 16, who are all siblings.

• Use the print function to display the information about the people. Study what happens.

• The problem, if you notice it, is the print function of the data structure. Each symbol in lisp
has a print function, which displays some information when the symbol is evaluated. We
will be discussing the solution to this problem in recitation, however, you may want to start
investigating how to modify the print function of defstruct, which can be easily done.

5

3 Allen’s Time Relations (20 points, Lisp bonus 4 points)
This section of the homework deals with time intervals, which are the building blocks for temporal
reasoning. For more background on the subject, goto pages 448 and 449 of AIMA. Figure 1 intro-
duces all 13 possible qualitative relationships that may exist between two intervals. These relations
are called Allen relations for qualitative temporal reasoning after James Allen who identified them
in his seminal paper [?].

 x

 x

 x

 x

 x

 x

 x

y

x before y
y after x

x meets y
y met−by x

x overlaps y
y overlapped−by x
x starts y
y started−by x
x during y
y contains x
x finishes y
y finished−by x

y

x equals y

Figure 1: Predicates on time intervals

You are asked to implement CLOS (Common Lisp Object System) objects to represent the
intervals and methods to determine whether or not the predicates hold.

1. Implement, using defclass, a data type time-point that has one slot, which is an
integer (representing seconds).

2. Implement, using defclass, two data types begint and endt, as subclasses of time-point.

3. Implement, using defclass, a data type interval that has the following slots: task-name,
begint, and endt, where begint and endt are of the type time-points.

4. Write methods Start and End that take an instance of interval and return the data
members begint and endt, respectively.

5. Write the methods that implement the predicates listed below and illustrated in Figure 1,
which take as input two objects of type interval and return whether or not each of the follow-
ing predicates holds.

6

• Meet(i,j)⇔ End(i) = Start(j)

• Before(i,j)⇔ End(i) < Start(j)

• After(i,j)⇔ Before(j,i)

• During(i, j)⇔ Start(j) ≤ Start(i)
∧

End(i) ≤ End(j)

• Overlap(i,j)⇔ ∃ k During(k,i)
∧

During(k, j)

• Equals(i,j)⇔ Start(i) = Start(j)
∧

End(i) = End(j)

• Finishes(i,j)⇔ End(i) = End(j)

• Contains(i,j)⇔ Start(i) < Start(j)
∧

End(i) > End(j)

The last two exercises in this homework are meant to introduce you to structures and classes.
Generally speaking, structures are much lighter data objects than classes are. This is because
classes require the definition of a many initialization methods (as described in the beautiful book
The Art of the Metaobject Protocol of Kiczales). Classes are powerful, but heavy, so do use them
only when you really need them.

4 Missionaries & Cannibals puzzle (60 points, Lisp bonus 6
points)

The puzzle is defined as follows: Three missionaries and three cannibals must cross a river using
a boat that can carry at most two people at a time. All six people start on one bank of the river,
and the goal is to find a series of boat rides that results in everyone on the second bank, with the
following restrictions:

• The boat cannot cross the river with no one on board

• The cannibals on either bank cannot outnumber the missionaries on that bank (lest the can-
nibals eat the missionaries)

Implement a solution to the Missionaries & Cannibals puzzle. Include a file called ’readme.txt’
that briefly describes how your program works and describes the functions you used to get the so-
lution, as well as the solution to the puzzle. Your program should solve this puzzle using recursion,
and display each of the boat rides used to solve the puzzle when run. Turn in (via handin) your
solution in a file called missionaries.lisp.

Hints:

• For reference, you can use the Lisp code for the farmer’s dilemma, which has been made
available on the website of the course under the section ‘Recitation.’

• Study this code and run it in ACL. ‘Trace’ the main functions until you understand how they
work.

7

• Then, using the code for the Farmer’s dilemma, write the Lisp code for solving the Mission-
aries and Cannibals puzzle.

8

