Title: Solving Problems by Searching
AIMA: Chapter 3 (Sections 3.4)
function GENERAL-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

Essence of search: which node to expand first?
→ search strategy

A strategy is defined by picking the order of node expansion
Types of Search

Uninformed: use only information available in problem definition

Heuristic: exploits some knowledge of the domain

Uninformed search strategies

1. Breadth-first search
2. Uniform-cost search
3. Depth-first search
4. Depth-limited search
5. Iterative deepening depth-first search
6. Bidirectional search
Search strategies

Criteria for evaluating search:

1. Completeness: does it always find a solution if one exists?
2. Time complexity: number of nodes generated/expanded
3. Space complexity: maximum number of nodes in memory
4. Optimality: does it always find a least-cost solution?

Time/space complexity measured in terms of:

- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the search space (may be ∞)
Breadth-first search (I)

→ Expand root node
→ Expand *all* children of root
→ Expand *each* child of root
→ Expand successors of each child of root, etc.

→ Expands nodes at depth d before nodes at depth $d + 1$
→ Systematically considers all paths length 1, then length 2, etc.
→ Implement: put successors at end of queue.. FIFO
Breadth-first search (2)
Breadth-first search (3)

→ One solution?
→ Many solutions? Finds shallowest goal first

1. Complete? Yes, if b is finite

2. Optimal? provided cost increases monotonically with depth, not in general (e.g., actions have same cost)

3. Time? \(1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})\)

\[
O(b^{d+1}) \left\{ \begin{array}{l}
\text{branching factor } b \\
\text{depth } d
\end{array} \right.
\]

4. Space? same, \(O(b^{d+1})\), keeps every node in memory, big problem
 can easily generate nodes at 10MB/sec so 24hrs = 860GB
Uniform-cost search (I)

→ Breadth-first does not consider path cost $g(x)$
→ Uniform-cost expands first lowest-cost node on the fringe
→ Implement: sort queue in decreasing cost order

When $g(x) = \text{Depth}(x)$ → Breadth-first \equiv Uniform-cost
Uniform-cost search (2)

1. Complete?
 Yes, if cost \(\geq \epsilon \)

2. Optimal?
 If the cost is a monotonically increasing function
 When cost is added up along path, an operator’s cost?

3. Time?
 \# of nodes with \(g \leq \) cost of optimal solution, \(O(b^{[C^*/\epsilon]}) \)
 where \(C^* \) is the cost of the optimal solution

4. Space?
 \# of nodes with \(g \leq \) cost of optimal solution, \(O(b^{[C^*/\epsilon]}) \)
Depth-first search (I)

→ Expands nodes at deepest level in tree
→ When dead-end, goes back to shallower levels
→ Implement: put successors at front of queue.. LIFO

→ Little memory: path and unexpanded nodes

For b: branching factor, m: maximum depth, space?
Depth-first search (2)
Depth-first search (3)

Time complexity:

- We may need to expand all paths, $O(b^m)$
- When there are many solutions, DFS may be quicker than BFS
- When m is big, much larger than d, ∞ (deep, loops), .. troubles

→ Major drawback of DFS: going deep where there is no solution..

Properties:

1. Complete? Not in infinite spaces, complete in finite spaces
2. Optimal?
3. Time? $O(b^m)$
 - terrible if m is much larger than d, but if solutions are dense, may be much faster than breadth-first
4. Space? $O(bm)$, linear!
Depth-limited search (I)

→ DFS is going too deep, put a threshold on depth!
 For instance, 20 cities on map for Romania, any node deeper than 19 is cycling. Don’t expand deeper!
→ Implement: nodes at depth \(l \) have no successor

Properties:

1. Complete?
2. Optimal?
3. Time? (given \(l \) depth limit)
4. Space? (given \(l \) depth limit)

Problem: how to choose \(l \)?
Iterative-deepening search (1)

- DLS with depth = 0
- DLS with depth = 1
- DLS with depth = 2
- DLS with depth = 3...

→ Combines benefits of DFS and BFS
Iterative-deepening search (2)

Limit = 0

Limit = 1

Limit = 2

Limit = 3
Iterative-deepening search (3)

→ combines benefits of DFS and BFS

Properties:

1. Time? \((d + 1).b^0 + (d).b + (d - 1).b^2 + \ldots + 1.b^d = O(b^d)\)

2. Space? \(O(bd)\), like DFS

3. Complete? like BFS

4. Optimal? like BFS (if step cost = 1)
Iterative-deepening search (4)

Some nodes are expanded several times, wasteful?

\[
N(\text{BFS}) = b + b^2 + b^3 + \ldots + b^d + (b^{d+1} - b)
\]

\[
N(\text{IDS}) = (d)b + (d - 1)b^2 + \ldots + (1)b^d
\]

Numerical comparison for \(b = 10 \) and \(d = 5 \):

\[
N(\text{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450
\]

\[
N(\text{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100
\]

IDS is preferred when search space is large and depth unknown.
Bidirectional search (I)

→ Given initial state and the goal state, start search from both ends and meet in the middle

→ Assume same b branching factor, \exists solution at depth d, time:

$$O(2b^{d/2}) = O(b^{d/2})$$

$b = 10, d = 6$, DFS = 1,111,111 nodes, BDS = 2,222 nodes!
Bidirectional search (2)

In practice:

- Need to define predecessor operators to search backwards
 If operators are invertible, no problem

- What if there are many goals (set state)?
 Do as for multiple-state search

- Need to check the 2 fringes to see how they match
 Need to check whether any node in one space appears in the other space (use hashing)
 Need to keep all nodes in a half in memory $O(b^{d/2})$

- What kind of search in each half space?
Summary

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>Yes, if (l \geq d)</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>(b^{d+1})</td>
<td>(b^{\lceil C^* / \varepsilon \rceil})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Space</td>
<td>(b^{d+1})</td>
<td>(b^{\lceil C^* / \varepsilon \rceil})</td>
<td>(bm)</td>
<td>(bl)</td>
<td>(bd)</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

\(b \) branching factor
\(d \) solution depth
\(m \) maximum depth of tree
\(l \) depth limit
Loops: Avoid repeated states (I)

Avoid expanding states that have already been visited

Valid for both infinite and finite trees

\[
\begin{cases}
 m & \text{maximum depth} \\
 m + 1 & \text{states} \\
 2^m & \text{possible branches (paths)}
\end{cases}
\]

Example:
Loops: (2)

Keep nodes in two lists:

- Open list: Fringe
- Closed list: Leaf and expanded nodes

Discard a current node that matches a node in the closed list

Tree-Search \rightarrow Graph-Search

Issues:

1. Implementation: hash table, access is constant time
 Trade-off cost of storing + checking vs. cost of searching

2. Losing optimality
 when new path is cheaper/shorter of the one stored

3. DFS and IDS now require exponential storage
Summary

Path: sequence of actions leading from one state to another

Partial solution: a path from an initial state to another state

Search: develop a set of partial solutions

- Search tree & its components (node, root, leaves, fringe)
- Data structure for a search node
- Search space vs. state space
- Node expansion, queue order
- Search types: uninformed vs. heuristic
- 6 uninformed search strategies
- 4 criteria for evaluating & comparing search strategies