Title: First-Order Logic
AIMA: Chapter 8 (Sections 8.1 and 8.2)

Section 8.3, discussed briefly, is also required reading

Introduction to Artificial Intelligence
CSCE 476-876, Fall 2020
URL: www.cse.unl.edu/~choueiry/F20-476-876

Berthe Y. Choueiry (Shu-we-ri)
(402)472-5444
Outline

• First-order logic:
 – basic elements
 – syntax
 – semantics

• Examples
Pros and cons of propositional logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information
 (unlike most data structures and databases)
- Propositional logic is compositional:
 meaning of $B_{1,1} \land P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is context-independent
 (unlike natural language, where meaning depends on context)
- but...
 Propositional logic has very limited expressive power
 E.g., cannot say “pits cause breezes in adjacent squares” except by writing one sentence for each square
Propositional Logic

- is simple
- illustrates important points: model, inference, validity, satisfiability, ..
- is restrictive: world is a set of facts
- lacks expressiveness:
 → In PL, world contains facts

First-Order Logic

- more symbols (objects, properties, relations)
- more connectives (quantifier)
First Order Logic

→ FOL provides more "primitives" to express knowledge:
 — objects (identity & properties)
 — relations among objects (including functions)

Objects: people, houses, numbers, Einstein, Huskers, event, ..

Properties: smart, nice, large, intelligent, loved, occurred, ..

Relations: brother-of, bigger-than, part-of, occurred-after,..

Functions: father-of, best-friend, double-of, ..

Examples:
 (objects? function? relation? property?)
 — one plus two equals four
 — squares neighboring the wumpus are smelly
Logic

Attracts: mathematicians, philosophers and AI people

Arguments:
— allows to represent the world and reason about it
— expresses anything that can be programmed

Non-committal to:
— symbols could be objects or relations
 (e.g., King(Gustave), King(Sweden, Gustave), Merciless(King))
— classes, categories, time, events, uncertainty

.. but amenable to extensions: OO FOL, temporal logics, situation/event calculus, modal logic, etc.

→ Some people think FOL *is* the language of AI
ture/false? donno :—(but it will remain around for some time..
Types of logic

Logics are characterized by what they commit to as “primitives”

Ontological commitment:
what exists—facts? objects? time? beliefs?

Epistemological commitment:
what states of knowledge?

<table>
<thead>
<tr>
<th>Language</th>
<th>Ontological Commitment</th>
<th>Epistemological Commitment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional logic</td>
<td>facts</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>First-order logic</td>
<td>facts, objects, relations</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Temporal logic</td>
<td>facts, objects, relations, times</td>
<td>true/false/unknown</td>
</tr>
<tr>
<td>Probability theory</td>
<td>facts</td>
<td>degree of belief 0…1</td>
</tr>
<tr>
<td>Fuzzy logic</td>
<td>degree of truth</td>
<td>degree of belief 0…1</td>
</tr>
</tbody>
</table>

Higher-Order Logic: views relations and functions of FOL as objects
Syntax of FOL: words and grammar

The words: symbols

- Constant symbols stand for objects: QueenMary, 2, UNL, etc.
- Variable symbols stand for objects: x, y, etc.
- Predicate symbols stand for relations: Odd, Even, Brother, Sibling, etc.
- Function symbols stand for functions (viz. relation) Father-of, Square-root, LeftLeg, etc.
- Quantifiers \forall, \exists
- Connectives: \land, \lor, \neg, \Rightarrow, \Leftrightarrow
- (Sometimes) equality $=$

Predicates and functions can have any arity (number of arguments)
Basic elements in FOL (i.e., the grammar)

In propositional logic, every expression is a sentence

In FOL,

- Terms

- Sentences:
 - atomic sentences
 - complex sentences

- Quantifiers:
 - Universal quantifier
 - Existential quantifier
Term

logical expression that refers to an object

— built with: constant symbols, variables, function symbols

\[
\text{Term} = \text{function}(\text{term}_1, \ldots, \text{term}_n)
\]

or constant or variable

— ground term: term with no variable
Atomic sentences

state facts

built with terms and predicate symbols

Atomic sentence = \textit{predicate}(\textit{term}_1, \ldots, \textit{term}_n)

or \textit{term}_1 = \textit{term}_2

Examples:

- Brother (Richard, John)
- Married (FatherOf(Richard), MotherOf(John))
Complex Sentences

built with atomic sentences and logical connectives

$\neg S$

$S_1 \land S_2$

$S_1 \lor S_2$

$S_1 \Rightarrow S_2$

$S_1 \Leftrightarrow S_2$

Examples:

Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)

$>(1, 2) \lor \leq(1, 2)$

$>(1, 2) \land \neg>(1, 2)$
Truth in first-order logic: Semantic

Sentences are true with respect to a model and an interpretation. Model contains objects and relations among them.

Interpretation specifies referents for:

- **constant symbols → objects**
- **predicate symbols → relations**
- **function symbols → functional relations**

An atomic sentence `predicate(term_1, \ldots, term_n)` is true iff the objects referred to by `term_1, \ldots, term_n` are in the relation referred to by `predicate`.
Model in FOL: example

The **domain** of a model is the set of objects it contains:

five objects

Intended interpretation: Richard refers Richard the Lion Heart, John refers to Evil King John, Brother refers to brotherhood relation, etc.
Models for FOL: Lots!

We can enumerate the models for a given KB vocabulary:

For each number of domain elements \(n \) from 1 to \(\infty \)
 For each \(k \)-ary predicate \(P_k \) in the vocabulary
 For each possible \(k \)-ary relation on \(n \) objects
 For each constant symbol \(C \) in the vocabulary
 For each choice of referent for \(C \) from \(n \) objects . . .

Computing entailment by enumerating models is not going to be easy!

There are many possible interpretations, also some model domain are not bounded
\[\rightarrow \] Checking entailment by enumerating is not an option
Quantifiers

allow to make statements about entire collections of objects

- universal quantifier: make statements about everything
- existential quantifier: make statements about some things
Universal quantification

∀ ⟨variables⟩ ⟨sentence⟩

Example: all dogs like bones ∀ x Dog(x) ⇒ LikeBones(x)

x = Indy is a dog x = Indiana Jones is a person

∀ x P is equivalent to the conjunction of instantiations of P

Dog(Indy) ⇒ LikeBones(Indy)
∧ Dog(Rebel) ⇒ LikeBones(Rebel)
∧ Dog(KingJohn) ⇒ LikeBones(KingJohn)
∧ ...

Typically: ⇒ is the main connective with ∀

Common mistake: using ∧ as the main connective with ∀

Example: ∀ x Dog(x) ∧ LikeBones(x)

all objects in the world are dogs, and all like bones
Existential quantification

$\exists \langle \text{variables} \rangle \langle \text{sentence} \rangle$

Example: some student will talk at the TechFair

$\exists x \text{Student}(x) \land \text{TalksAtTechFair}(x)$

Pat, Leslie, Chris are students

$\exists x \ P$ is equivalent to the disjunction of instantiations of P

\[
\begin{align*}
\text{Student}(\text{Pat}) \land \text{TalksAtTechFair}(\text{Pat}) \\
\lor \text{Student}(\text{Leslie}) \land \text{TalksAtTechFair}(\text{Leslie}) \\
\lor \text{Student}(\text{Chris}) \land \text{TalksAtTechFair}(\text{Chris}) \\
\lor \ldots
\end{align*}
\]

Typically: \land is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists

$\exists x \text{Student}(x) \Rightarrow \text{TalksAtTechFair}(x)$

is true if there is anyone who is not Student
Properties of quantifiers (I)

∀x ∀y is the same as ∀y ∀x

∃x ∃y is the same as ∃y ∃x

∃x ∀y is not the same as ∀y ∃x

∃x ∀y Loves(x, y)

“There is a person who loves everyone in the world”

∀y ∃x Loves(x, y)

“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

∀x Likes(x, IceCream) → ∃x ¬Likes(x, IceCream)

∃x Likes(x, Broccoli) → ∀x ¬Likes(x, Broccoli)

Parsimony principal: ∀, ¬, and ⇒ are sufficient
Properties of quantifiers (II)

Nested quantifier:
\(\forall x (\exists y (P(x, y))) \):

- every object in the world has a particular property, which is the property to be related to some object by the relation \(P \)

\(\exists x (\forall y (P(x, y))) \):

- there is some object in the world that has a particular property, which is the property to be related to every object by the relation \(P \)

Lexical scoping: \(\forall x [\text{Cat}(x) \lor \exists x \text{Brother}(\text{Richard}, x)] \)

Well-formed formulas (WFF): (kind of correct spelling)

- every variable must be introduced by a quantifier

\(\forall x P(y) \) is not a WFF
Examples

Brothers are siblings

“Sibling” is symmetric

One’s mother is one’s female parent

A first cousin is a child of a parent’s sibling
Examples

\[\forall x, y \ \text{Brother}(x, y) \implies \text{Sibling}(x, y) \]

\[\forall x, y \ \text{Sibling}(x, y) \implies \text{Sibling}(y, x) \]

\[\forall x, y \ \text{Mother}(x, y) \implies (\text{Female}(x) \land \text{Parent}(x, y)) \]

\[\forall x, y \ \text{FirstCousin}(x, y) \iff \exists a, b \ \text{Parent}(a, x) \land \text{Sibling}(a, b) \land \text{Parent}(b, y) \]
Tricky example

Someone is loved by everyone
\[\exists x \forall y \, Loves(y, x) \]

Someone with red-hair is loved by everyone
\[\exists x \forall y \, Redhair(x) \land Loves(y, x) \]

Alternatively:
\[\exists x \, Person(x) \land Redhair(x) \land (\forall y \, Person(y) \Rightarrow Loves(y, x)) \]
Equality

\(\text{term}_1 = \text{term}_2 \) is true under a given interpretation if and only if \(\text{term}_1 \) and \(\text{term}_2 \) refer to the same object

Examples

- Father(John) = Henry
- \(1 = 2 \) is satisfiable
- \(2 = 2 \) is valid
- Useful to distinguish two objects:
 - Definition of (full) Sibling in terms of Parent:
 \[
 \forall x, y \ Sibling(x, y) \iff [\neg(x = y) \land \exists m, f \neg(m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]
 \]
 Spot has at least two sisters: ...

AIMA, Exercise 8.4. Write: “All Germans speak the same languages,” where \(\text{Speaks}(x, l) \) means that person \(x \) speaks language \(l \).
Knowledge representation (KR)

Domain: a section of the world about which we wish to express some knowledge

Example: Family relations (kinship):
- **Objects**: people
- **Properties**: gender, married, divorced, single, widowed
- **Relations**: parenthood, brotherhood, marriage..

Unary predicates: Male, Female

Binary relations: Parent, Sibling, Brother, Child, etc.

Functions: Mother, Father

\[\forall m, c, Mother(c) = m \iff Female(m) \land Parent(m, c) \]
In Logic (informally)

- Basic facts: axioms
- Derived facts: theorems

Independent axiom

an axiom that cannot be derived from the rest

→ Goal of mathematicians: find the minimal set of independent axioms

In AI

- Assertions: sentences added to a KB using TELL
- Queries or goals: sentences asked to KB using ASK
Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at $t = 5$:

$\text{Tell}(KB, \text{Percept}([\text{Smell}, \text{Breeze}, \text{None}], 5))$
$\text{Ask}(KB, \exists a \text{Action}(a, 5))$

I.e., does the KB entail any particular actions at $t = 5$?

Answer: Yes, $\{a/\text{Shoot}\} \leftarrow \text{substitution}$ (binding list)

Given a sentence S and a substitution σ,
$S\sigma$ denotes the result of plugging σ into S; e.g.,
$S = \text{Smarter}(x, y)$
$\sigma = \{x/\text{Hillary}, y/\text{Bill}\}$
$S\sigma = \text{Smarter}(\text{Hillary}, \text{Bill})$

$\text{Ask}(KB, S)$ returns some/all σ such that $KB \models S\sigma$
Prepare for next lecture: AIMA, Exercise 8.24, page 319

Takes(x, c, s): student x takes course c in semester s

Passes(x, c, s): student x passes course c in semester s

Score(x, c, s): the score obtained by student x in course c in semester s

$x > y$: x is greater than y

F and G: specific French and Greek courses

Buys(x, y, z): x buys y from z

Sells(x, y, z): x sells y from z

Shaves(x, y): person x shaves person y

Born(x, c): person x is born in country c

Parent(x, y): person x is parent of person y

Citizen(x, c, r): person x is citizen of country c for reason r

Resident(x, c): person x is resident of country c of person y

Fools(x, y, t): person x fools person y at time t

Student (x), Person(x), Man(x), Barber(x), Expensive(x), Agent(x), Insured(x), Smart(x), Politician(x),
AI Limerick

If your thesis is utterly vacuous
Use first-order predicate calculus
With sufficient formality
The sheerest banality
Will be hailed by the critics: "Miraculous!"

Henry Kautz

In Canadian Artificial Intelligence, September 1986
head of AI at AT&T Labs-Research
Program co-chair of AAAI-2000
Professor at University of Washington, Seattle

Founding Director of Institute for Data Science and Professor at University of Rochester