Title: First-Order Logic

AIMA: Chapter 8 (Sections 8.1 and 8.2) Section 8.3, discussed briefly, is also required reading

> Introduction to Artificial Intelligence CSCE 476-876, Fall 2020 URL: www.cse.unl.edu/~choueiry/F20-476-876

> > Berthe Y. Choueiry (Shu-we-ri) (402)472-5444

 \vdash

 \mathbf{N}

Outline

- First-order logic:
 - basic elements
 - syntax
 - semantics
- Examples

$\mathbf{Pros}\ \mathbf{and}\ \mathbf{cons}$ of propositional logic

- Propositional logic is <u>declarative</u>: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- Propositional logic is <u>compositional</u>: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is <u>context-independent</u> (unlike natural language, where meaning depends on context)
- but...

Propositional logic has very limited expressive power E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

 $\boldsymbol{\omega}$

Propositional Logic

- is simple
- illustrates important points: model, inference, validity, satisfiability, ..
- is restrictive: world is a set of facts
- lacks expressiveness:
 - \rightarrow In PL, world contains <u>facts</u>

First-Order Logic

- more symbols (objects, properties, relations)
- more connectives (quantifier)

4

First Order Logic

 \rightarrow FOL provides more "primitives" to express knowledge:

— objects (identity & properties)

— relations among objects (including functions)

Objects: people, houses, numbers, Einstein, Huskers, event, ..
Properties: smart, nice, large, intelligent, loved, occurred, ..
Relations: brother-of, bigger-than, part-of, occurred-after, ..
Functions: father-of, best-friend, double-of, ..

Examples:(objects? function? relation? property?)— one plus two equals four[sic]

— squares neighboring the wumpus are smelly

СЛ

Logic

Attracts: mathematicians, philosophers and AI people

Advantages:

— allows to represent the world and reason about it

— expresses anything that can be programmed

Non-committal to:

- symbols could be objects or relations
 - (e.g., King(Gustave), King(Sweden, Gustave), Merciless(King))

- classes, categories, time, events, uncertainty

.. but amenable to extensions: OO FOL, temporal logics, situation/event calculus, modal logic, etc.

 \longrightarrow Some people think FOL *is* the language of AI true/false? donno :—(but it will remain around for some time..

Types of logic

Logics are characterized by what they commit to as "primitives"

Ontological commitment :

what exists—facts? objects? time? beliefs?

Epistemological commitment :

what states of knowledge?

-7

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts degree of truth	true/false/unknown true/false/unknown true/false/unknown degree of belief 01 degree of belief 01

Higher-Order Logic: views relations and functions of FOL as objects

${\bf Syntax}~of~FOL:$ words and grammar

The words: symbols

- Constant symbols stand for objects: QueenMary, 2, UNL, etc.
- Variable symbols stand for objects: x, y, etc.
- Predicate symbols stand for relations: Odd, Even, Brother, Sibling, etc.
- Function symbols stand for functions (viz. relation) Father-of, Square-root, LeftLeg, etc.
- Quantifiyers \forall , \exists
- Connectives: \land , \lor , \neg , \Rightarrow , \Leftrightarrow ,
- (Sometimes) equality =

Predicates and functions can have any arity (number of arguments)

 ∞

Basic elements in FOL (i.e., the grammar) In propositional logic, every expression is a sentence In FOL, • Terms • Sentences: – atomic sentences – complex sentences • Quantifiers: – Universal quantifier

– Existential quantifier

Instructor's notes October

16,

#132020

 \mathfrak{O}

Atomic sentences

state facts

built with terms and predicate symbols

 $\frac{1}{1}$

Atomic sentence = $predicate(term_1, \ldots, term_n)$

or $term_1 = term_2$

Examples:

Brother (Richard, John) Married (FatherOf(Richard), MotherOf(John))

Complex Sentences

built with atomic sentences and logical connectives

 $\neg S$

 $S_1 \wedge S_2$

 $S_1 \lor S_2$ $S_1 \Rightarrow S_2$ $S_1 \Leftrightarrow S_2$

Instructor's notes #13October 16, 2020 Examples: Sibling(KingJohn,Richard) \Rightarrow Sibling(Richard,KingJohn) $>(1,2) \lor \leq (1,2)$ $>(1,2) \land \neg >(1,2)$

Truth in first-order logic: Semantic

Sentences are true with respect to a <u>model</u> and an <u>interpretation</u> Model contains objects and relations among them Interpretation specifies referents for

 $constant \ symbols \rightarrow \underline{objects}$ $predicate \ symbols \rightarrow \underline{relations}$

function symbols \rightarrow functional relations

An atomic sentence $predicate(term_1, \ldots, term_n)$ is true iff the <u>objects</u> referred to by $term_1, \ldots, term_n$ are in the <u>relation</u> referred to by predicate

14 five objects Instructor's notes relation, etc.

The <u>domain</u> of a model is the set of objects it contains: five objects

Intended interpretation: Richard refers Richard the Lion Heart, John refers to Evil King John, Brother refers to brotherhood relation, etc.

Models for FOL: Lots!

We can enumerate the models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary For each possible k-ary relation on n objects For each constant symbol C in the vocabulary For each choice of referent for C from n objects ...

Computing entailment by enumerating models is not going to be easy!

There are many possible interpretations, also some model domain are not bounded

 \longrightarrow Checking entailment by enumerating is not an option

Quantifiers

allow to make statements about entire collections of objects

- universal quantifier: make statements about everything
- existential quantifier: make statements about some things

Universal quantification

 $\forall \; \langle variables \rangle \;\; \langle sentence \rangle$

Example: all dogs like bones $\forall x Dog(x) \Rightarrow LikeBones(x)$ x = Indy is a dog x = Indiana Jones is a person

 $\forall x P$ is equivalent to the <u>conjunction</u> of <u>instantiations</u> of P

 $Dog(Indy) \Rightarrow LikeBones(Indy)$

- $\land \quad Dog(Rebel) \Rightarrow LikeBones(Rebel)$
- $\land \quad Dog(KingJohn) \Rightarrow LikeBones(KingJohn)$

 $\wedge \dots$

Typically: \Rightarrow is the main connective with \forall **Common mistake**: using \land as the main connective with \forall Example: $\forall x \ Dog(x) \land LikeBones(x)$ all objects in the world are dogs, and all like bones

17

Existential quantification

 $\exists \langle variables \rangle \ \langle sentence \rangle$

Example: some student will talk at the TechFair $\exists xStudent(x) \land TalksAtTechFair(x)$ Pat, Leslie, Chris are students

 $\exists x P$ is equivalent to the disjunction of <u>instantiations</u> of P

 $Student(Pat) \land TalksAtTechFair(Pat)$

- \lor Student(Leslie) \land TalksAtTechFair(Leslie)
- $\lor \quad Student(Chris) \land TalksAtTechFair(Chris)$

 \vee ...

Typically: \land is the main connective with \exists **Common mistake**: using \Rightarrow as the main connective with \exists $\exists x Student(x) \Rightarrow TalksAtTechFair(x)$ is true if there is anyone who is not Student

 $\frac{18}{18}$

Properties of quantifiers (I)

 $\forall x \; \forall y \text{ is the same as } \forall y \; \forall x$

 $\exists x \exists y \text{ is the same as } \exists y \exists x$

 $\exists x \; \forall y \text{ is } \underline{\text{not}} \text{ the same as } \forall y \; \exists x$

 $\exists x \; \forall y \; Loves(x, y)$

"There is a person who loves everyone in the world"

 $\forall y \; \exists xLoves(x,y)$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

 $\forall x \ Likes(x, IceCream) \qquad \neg \ \exists x \ \neg Likes(x, IceCream)$

 $\exists x \ Likes(x, Broccoli) \qquad \neg \ \forall x \ \neg Likes(x, Broccoli)$

Parsimony principal: \forall , \neg , and \Rightarrow are sufficient

Properties of quantifiers (II)

Nested quantifier:

 $\forall x (\exists y (P(x, y)):$

every object in the world has a particular property, which is the property to be related to some object by the relation P

 $\exists x (\forall y(P(x,y)):$

there is some object in the world that has a particular property, which is the property to be related to every object by the relation P

Lexical scoping: $\forall x[Cat(x) \lor \exists xBrother(Richard, x)]$

Instructor's notes #13 October 16, 2020

Well-formed formulas (WFF): (kind of correct spelling) every variable must be introduced by a quantifier $\forall x P(y)$ is not a WFF

Examples

Brothers are siblings

"Sibling" is symmetric

One's mother is one's female parent

Instructor's notes #13 October 16, 2020

A first cousin is a child of a parent's sibling

Examples

 $\forall x, y \ Brother(x, y) \Rightarrow Sibling(x, y)$

 $\forall x, y \ Sibling(x, y) \Rightarrow Sibling(y, x)$

 $\forall x, y \; FirstCousin(x, y) \Leftrightarrow$

 $\forall x, y \ Mother(x, y) \Rightarrow (Female(x) \land Parent(x, y))$

 $\exists a, b \ Parent(a, x) \land Sibling(a, b) \land Parent(b, y)$

Tricky example

Someone is loved by everyone

 $\exists x \forall y \ Loves(y, x)$

23

Someone with red-hair is loved by everyone

 $\exists x \forall y \ Redhair(x) \land Loves(y, x)$

Alternatively:

 $\exists x \ Person(x) \land Redhair(x) \land (\forall y \ Person(y) \Rightarrow Loves(y, x))$

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object Examples

- Father(John)=Henry
- 1 = 2 is satisfiable
- 2 = 2 is valid
- Useful to distinguish two objects:

– Definition of (full) Sibling in terms of Parent:

 $\forall x, y \ Sibling(x, y) \Leftrightarrow [\neg (x = y) \land \exists m, f \neg (m = y) \land (m = y) \land \exists m, f \neg (m = y) \land (m =$

 $f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)] - Spot has at least two sisters: ...$

AIMA, Exercise 8.4. Write: "All Germans speak the same languages," where Speaks(x, l) means that person x speaks language l.

Knowledge representation (KR)

Domain: a section of the world about which we wish to express some knowledge

Example: Family relations (kinship):

- Objects: people
- Properties: gender, married, divorced, single, widowed
 - Relations: parenthood, brotherhood, marriage..

Unary predicates: Male, FemaleBinary relations: Parent, Sibling, Brother, Child, etc.Functions: Mother, Father

 $\forall m, c, Mother(c) = m \iff Female(m) \land Parent(m, c)$

In Logic (informally)

- Basic facts: <u>axioms</u>
- Derived facts: <u>theorems</u>

Independent axiom

an axiom that cannot be derived from the rest

 \longrightarrow Goal of mathematicians: find the minimal set of independent axioms (definitions)

In AI

- Assertions: sentences added to a KB using TELL
- Queries or goals: sentences asked to KB using ASK

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t = 5: Tell(KB, Percept([Smell, Breeze, None], 5)) $Ask(KB, \exists aAction(a, 5))$ I.e., does the KB entail any particular actions at t = 5? Answer: Yes, $\{a/Shoot\}$ \leftarrow <u>substitution</u> (binding list) Given a sentence S and a substitution σ , $S\sigma$ denotes the result of plugging σ into S; e.g., S = Smarter(x, y) $\sigma = \{x/Hillary, y/Bill\}$ $S\sigma = Smarter(Hillary, Bill)$ Ask(KB, S) returns some/all σ such that $KB \models S\sigma$

Prepare for next lecture: AIMA, Exercise 8.24, page 319 Takes(x, c, s): student x takes course c in semester s Passes(x, c, s): student x passes course c in semester s Score(x, c, s): the score obtained by student x in course c in semester s x > y: x is greater that y F and G: specific French and Greek courses Buys(x, y, z): x buys y from z Sells(x, y, z): x sells y from z Shaves(x, y): person x shaves person y Born(x, c): person x is born in country c Parent(x, y): person x is parent of person y $\operatorname{Citizen}(x, c, r)$: person x is citizen of country c for reason r Resident(x, c): person x is resident of country c of person y Fools(x, y, t): person x fools person y at time t Student (x), Person(x), Man(x), Barber(x), Expensive(x), Agent(x), Insured(x), Smart(x), Politician(x),

28

