
✬✫

✩✪

Title: Adverserial Search

AIMA: Chapter 5 (Sections 5.1, 5.2 and 5.3)

Introduction to Artificial Intelligence

CSCE 476-876, Fall 2020

URL: www.cse.unl.edu/˜choueiry/F20-476-876

Berthe Y. Choueiry (Shu-we-ri)

(402)472-5444

B
.Y

.
C

h
o
u
e
ir

y
1

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Outline

• Introduction

• Minimax algorithm

• Alpha-beta pruning

B
.Y

.
C

h
o
u
e
ir

y
2

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Context

• In an MAS, agents affect each other’s welfare

• Environment can be cooperative or competitive

• Competitive environments yield adverserial search problems

(games)

• Approaches: mathematical game theory and AI games

B
.Y

.
C

h
o
u
e
ir

y
3

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Game theory vs. AI

• AI games: fully observable, deterministic environments, players

alternate, utility values are equal (draw) or opposite

(winner/loser)

In vocabulary of game theory: deterministic, turn-taking,

two-player, zero-sum games of perfect information

• Games are attractive to AI: states simple to represent, agents

restricted to a small number of actions, outcome defined by

simple rules

Not croquet or ice hockey, but typically board games

Exception: Soccer (Robocup www.robocup.org/)

B
.Y

.
C

h
o
u
e
ir

y
4

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Board game playing: an appealing target of AI research

Board game: Chess (since early AI), Othello, Go, Backgammon,

etc.

- Easy to represent

- Fairly small numbers of well-defined actions

- Environment fairly accessible

- Good abstraction of an enemy, w/o real-life (or war) risks :—)

But also: Bridge, ping-pong, etc.

B
.Y

.
C

h
o
u
e
ir

y
5

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Characteristics

• ‘Unpredictable’ opponent: contingency problem

(interleaves search and execution)

• Not the usual type of ‘uncertainty’:

no randomness/no missing information (such as in traffic)

but, the moves of the opponent expectedly non benign

• Challenges:

- huge branching factor

- large solution space

- Computing optimal solution is infeasible

- Yet, decisions must be made. Forget A*...

B
.Y

.
C

h
o
u
e
ir

y
6

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Discussion

• What are the theoretically best moves?

• Techniques for choosing a good move when time is tight
√

Pruning: ignore irrelevant portions of the search space

× Evaluation function: approximate the true utility of a state

without doing search

B
.Y

.
C

h
o
u
e
ir

y
7

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Two-person Games

- 2 player: Min and Max

- Max moves first

- Players alternate until end of game

- Gain awarded to player/penalty give to loser

Game as a search problem:

• Initial state: board position & indication whose turn it is

• Successor function: defining legal moves a player can take

Returns {(move, state)∗}

• Terminal test: determining when game is over

states satisfy the test: terminal states

• Utility function (a.k.a. payoff function): numerical value for

outcome e.g., Chess: win=1, loss=-1, draw=0

B
.Y

.
C

h
o
u
e
ir

y
8

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Usual search

Max finds a sequence of operators yielding a terminal goal scoring

winner according to the utility function

Game search

• Min actions are significant

Max must find a strategy to win regardless of what Min does:

−→ correct action for Max for each action of Min

• Need to approximate (no time to envisage all possibilities

difficulty): a huge state space, an even more huge search space

e.g., chess:







1040 different legal positions

Average branching factor=35, 50 moves/player= 35100

• Performance in terms of time is very important

B
.Y

.
C

h
o
u
e
ir

y
9

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Example: Tic-Tac-Toe

Max has 9 alternative moves

Terminal states’ utility: Max wins=1, Max loses = -1, Draw = 0

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

�–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

B
.Y

.
C

h
o
u
e
ir

y
10

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Example: 2-ply game tree

Max’s actions: a1, a2, a3

Min’s actions: b1, b2, b3

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3

a1
a2

a3

b1

b2

b3

c1

c2

c3 d1

d2

d3

MIN

Minimax algorithm determines the optimal strategy for Max

→ decides which is the best move

B
.Y

.
C

h
o
u
e
ir

y
11

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Minimax algorithm

- Generate the whole tree, down to the leaves

- Compute utility of each terminal state

- Iteratively, from the leaves up to the root, use utility of nodes at

depth d to compute utility of nodes at depth (d− 1):

MIN ‘row’: minimum of children

MAX ‘row’: maximum of children

Minimax-Value (n)














Utility(n) if n is a terminal node

maxs∈Succ(n)Minimax-Value(s) if n is a Max node

mins∈Succ(n)Minimax-Value(s) if n is a Min node

B
.Y

.
C

h
o
u
e
ir

y
12

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Minimax decision

• MAX’s decision: minimax decision maximizes utility under the

assumption that the opponent will play perfectly to his/her

own advantage

• Minimax decision maximes the worst-case outcome for Max

(which otherwise is guaranteed to do better)

• If opponent is sub-optimal, other strategies may reach better

outcome better than the minimax decision

B
.Y

.
C

h
o
u
e
ir

y
13

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Minimax algorithm: Properties

• m maximum depth

b legal moves

• Using Depth-first search, space requirement is:

O(bm): if generating all successors at once

O(m): if considering successors one at a time

• Time complexity O(bm)

Real games: time cost totally unacceptable

B
.Y

.
C

h
o
u
e
ir

y
14

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Multiple players games

Utility(n) becomes a vector of the size of the number of players

For each node, the vector gives the utility of the state for each

player
to move

A

B

C

A

(1, 2, 6) (4, 2, 3) (6, 1, 2) (7, 4,�1) (5,�1,�1) (1, 5, 2) (7, 7,�1) (5, 4, 5)

(1, 2, 6) (6, 1, 2) (1, 5, 2) (5, 4, 5)

(1, 2, 6) (1, 5, 2)

(1, 2, 6)

X

B
.Y

.
C

h
o
u
e
ir

y
15

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Alliance formation in multiple players games

How about alliances?

• A and B in weak positions, but C in strong position

A and B make an alliance to attack C (rather than each other

→ Collaboration emerges from purely selfish behavior!

• Alliances can be done and undone (careful for social stigma!)

• When a two-player game is not zero-sum, players may end up

automatically making alliances (for example when the terminal

state maximizes utility of both players)

B
.Y

.
C

h
o
u
e
ir

y
16

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Alpha-beta pruning

• Minimax requires computing all terminal nodes: unacceptable

• Do we really need to do compute utility of all terminal nodes?

... No, says John McCarthy in 1956:

It is possible to compute the correct minimax decision without

looking at every node in the tree, and yet get the correct

decision

• Use pruning (eliminating useless branches in a tree)

B
.Y

.
C

h
o
u
e
ir

y
17

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Example of alpha-beta pruning

(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

Try 14, 5, 2, 6 below D

B
.Y

.
C

h
o
u
e
ir

y
18

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

General principal of Alpha-beta pruning

If Player has a better choice m at







— a parent node of n

— any choice point further up

n will never be reached in actual play

Player

Opponent

Player

Opponent

..

..

..

m

n

Once we have found enough about n (e.g., through one of it

descendants), we can prune it (i.e., discard all its remaining

descendants)

B
.Y

.
C

h
o
u
e
ir

y
19

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Mechanism of Alpha-beta pruning

α: value of best choice so far for MAX, (maximum)

β: value of best choice so far for MIN, (minimum)

Player

Opponent

Player

Opponent

..

..

..

m

n

Alpha-beta search:

- updates the value of α, β as it goes along

- prunes a subtree as soon as its worse then current α or β

B
.Y

.
C

h
o
u
e
ir

y
20

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Effectiveness of pruning

Effectiveness of pruning depends on the order of new nodes

examined
(a) (b)

(c) (d)

(e) (f)

3 3 12

3 12 8 3 12 8 2

3 12 8 2 14 3 12 8 2 14 5 2

A

B

A

B

A

B C D

A

B C D

A

B

A

B C

[−∞, +∞] [−∞, +∞]

[3, +∞][3, +∞]

[3, 3][3, 14]

[−∞, 2]

[−∞, 2] [2, 2]

[3, 3]

[3, 3][3, 3]

[3, 3]

[−∞, 3] [−∞, 3]

[−∞, 2] [−∞, 14]

B
.Y

.
C

h
o
u
e
ir

y
21

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

✬✫

✩✪

Savings in terms of cost

• Ideal case:

Alpha-beta examines O(bd/2) nodes (vs. Minimax: O(bd))

→ Effective branching factor
√
b (vs. Minimax: b)

• Successors ordered randomly:

b > 1000, asymptotic complexity is O((b/ log b)d)

b reasonable, asymptotic complexity is O(b3d/4)

• Practically: Fairly simple heuristics work (fairly) well

B
.Y

.
C

h
o
u
e
ir

y
22

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
9

A
u
g
u
s
t

3
1
,
2
0
2
0

