Homework 6

Assigned on: Friday, October 16, 2020.

Due: Friday, October 23, 2020.

Points: 120 points + up to 20 bonus

Contents

Alert: If you submit your homework handwritten, it must be *absolutely neat* or it *will not* be corrected. If you type your homework (preferable), submit using webhandin.

1 SAT Modeling

For each of the following scenarios, write a CNF formula to describe the scenario and complete the following four steps:

- 1. First state the propositions and what they represent.
- 2. State the sentence.
- 3. Explain the meaning of the clauses.
- 4. Is the sentence satisfiable? Explain why or why not.

1.1 Scenario A (5 Points)

Write a CNF formula to model the following scenario and complete the four steps from above:

- 1. There are four choices of desserts: ice cream, fruit bowl, cake, pie.
- 2. Exactly one dessert must be selected (i.e., one and only one).

1.2 Scenario B (5 Points)

Write a CNF formula to model the following scenario and complete the four steps from above:

- 1. Damon, Enrique, and Lois need to complete a paper and a presentation for a class.
- 2. To complete each task, they need to select a day to meet during the week (Mon, Tue, Wed, Thu, Fri).
- 3. Damon cannot meet on Monday. Further, he wants to complete the paper before the presentation and not both on the same day.
- 4. Enrique can meet any day but cannot meet on two consecutive days.
- 5. Lois wants to complete the presentation on or before Wednesday.

1.3 Scenario C (5 Points)

Write a CNF formula to model the following scenario and complete the four steps from above:

1. The four states (NE, IA, KS, MO) on the map shown in Figure ?? must be colored using three colors: red, green, and blue.

Figure 1: Four states (NE, IA, KS, MO)

- 2. Each state must be colored with exactly one color.
- 3. Adjacent states (i.e., states sharing a border line) cannot have the same color.

2	AIMA, Exercise 7.1, page 279.	(16 points)	
3	AIMA, Exercise 7.2, page 280.	$(5 { m points})$	
4	AIMA, Exercise 7.7, page 281.	(6 points)	
5	Truth Tables	(8 points)	
Use truth tables to show that each of the following is a tautology. 1. $(p \land q) \rightarrow \neg(\neg p \lor \neg q)$ 2. $[Mary \land (Mary \rightarrow Sysy)] \rightarrow Sysy$			
3. 4.	$\alpha \to [\beta \to (\alpha \land \beta)]$ (a \to b) \to [(b \to c) \to (a \to c)]		
6	AIMA, Exercise 7.10, page 281.	(16 points)	
Only	b, c, d, e, f, and g.		
7	Logical Equivalences	(8 points)	
Using a method of your choice, verify:			
1.	$(\alpha \rightarrow \beta) \equiv (\neg \beta \rightarrow \neg \alpha)$ contraposition		
2.	$\neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta)$ de Morgan		
3.	$(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \gamma) \lor (\alpha \land \beta)) \text{ distributivity of } \land \text{ over } \lor$		
8	AIMA, Exercise 7.22, page 284.	(18 points + 20 bonus)	

Parts a, b, and c are required. Parts d, e, and f are bonus.

9 Proofs

Give the explanations of each step if the steps are given, and give both the explanation and step if they are not.

(28 points)

• If $q \wedge (r \wedge p), t \to v, v \to \neg p$, then $\neg t \wedge r$.	
Proof	Explanations
1. $q \wedge (r \wedge p)$	Given
2. $t \rightarrow v$	Given
3. $v \to \neg p$	Given
4. $t \rightarrow \neg p$	
5. $(r \wedge p)$	
6. <i>r</i>	
7. p	

8. $\neg \neg p$ 9. $\neg t$

10. $\neg t \wedge r$

• If $p \to (q \land r), q \to s$, and $r \to t$, then $p \to (s \land t)$.

\mathbf{Proof}

Explanations

Explanations

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.

• Prove by contradiction.

If $\neg(\neg p \land q), p \rightarrow (\neg t \lor r), q$, and t, then r.

\mathbf{Proof}

1. $\neg(\neg p \land q)$	Given
2. $p \to (\neg t \lor r)$	Given
3. q	Given
4. <i>t</i>	Given
5. $\neg r$	Negation of Conclusion
6.	
7.	
8.	
9.	
10.	

11.

12.