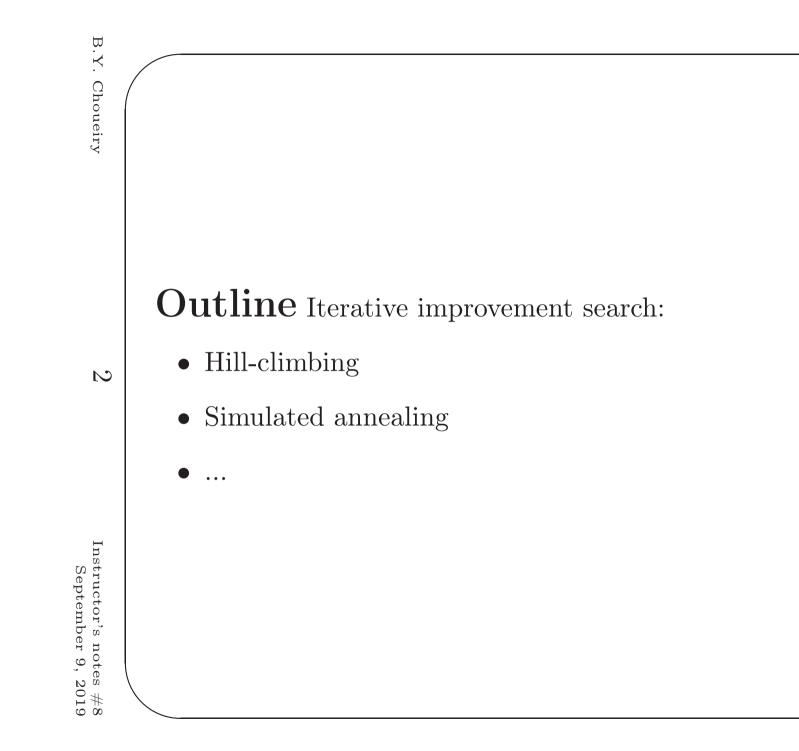
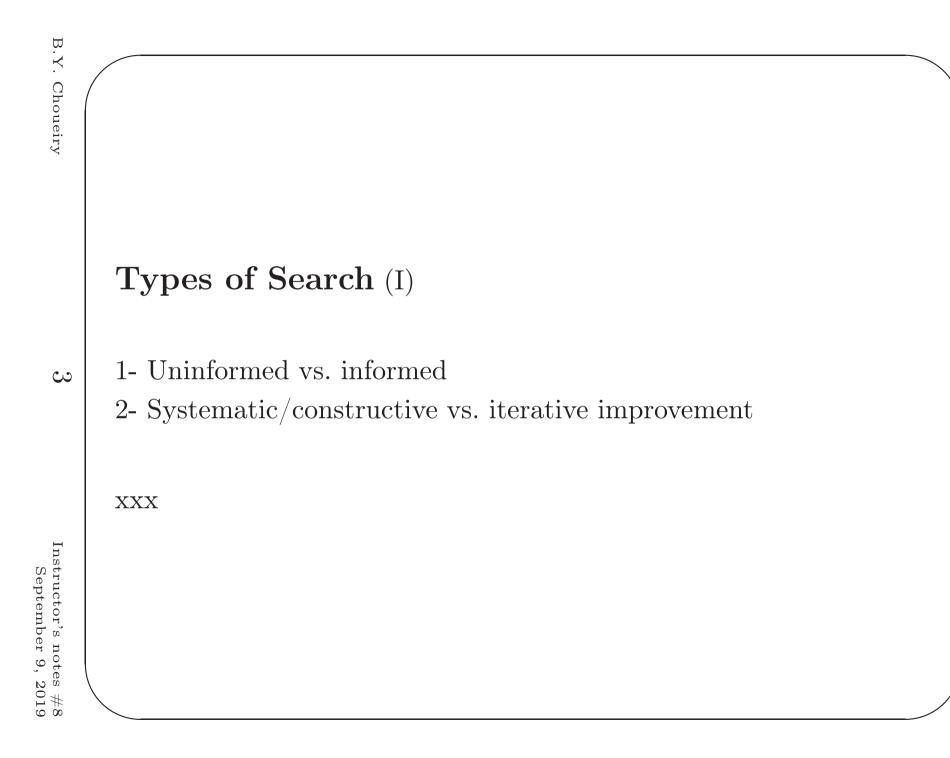
\vdash

Title: Local Search Required reading: AIMA, Chapter 4 LWH: Chapters 6, 10, 13 and 14.

> Introduction to Artificial Intelligence CSCE 476-876, Fall 2019 URL: www.cse.unl.edu/~choueiry/F19-476-876

> > Berthe Y. Choueiry (Shu-we-ri) (402)472-5444





Iterative improvement (a.k.a. local search)

 \longrightarrow Sometimes, the 'path' to the goal is irrelevant only the state description (or its quality) is needed

Iterative improvement search

- choose a single current state, sub-optimal
- gradually modify current state
- generally visiting 'neighbors'
- until reaching a near-optimal state

Example: complete-state formulation of *N*-queens

4

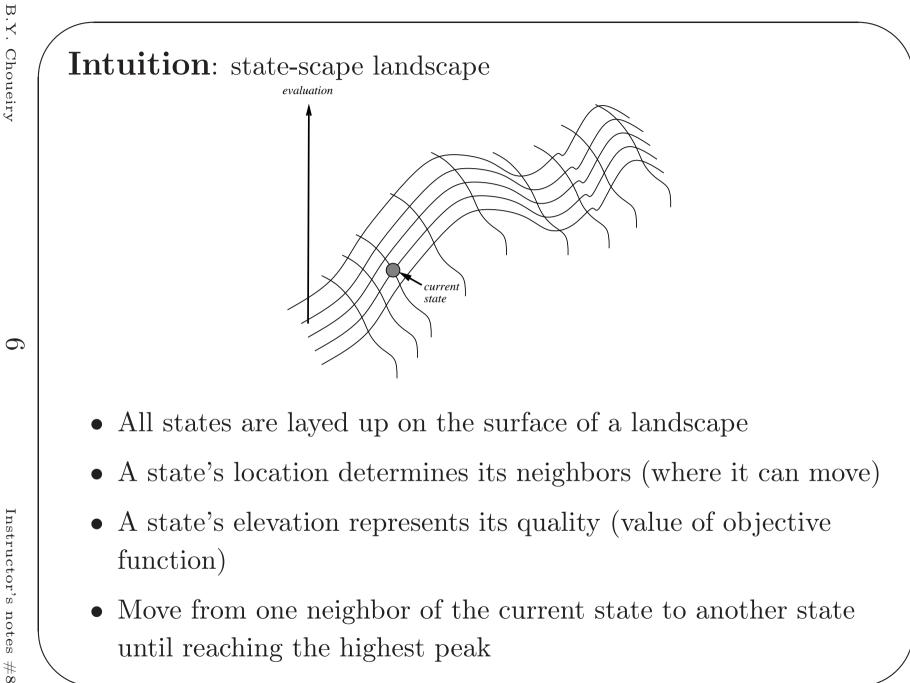
Main advantages of local search techniques

1. Memory (usually a constant amount)

- 2. Find reasonable solutions in large spaces where we cannot possibly search the space exhaustively
- 3. Useful for optimization problems:

best state given an objective function (quality of the goal)

СЛ



September ,9)s #8 2019

Two major classes

1. Hill climbing (a.k.a. gradient ascent/descent)

 \rightarrow try to make changes to improve quality of current state

2. Simulated Annealing (physics) \rightarrow things can temporarily get worse

-1

Others: tabu search, local beam search, genetic algorithms, etc.

 \rightarrow Optimality (soundness)? Completeness?

 \rightarrow Complexity: space? time?

 \longrightarrow In practice, surprisingly good..

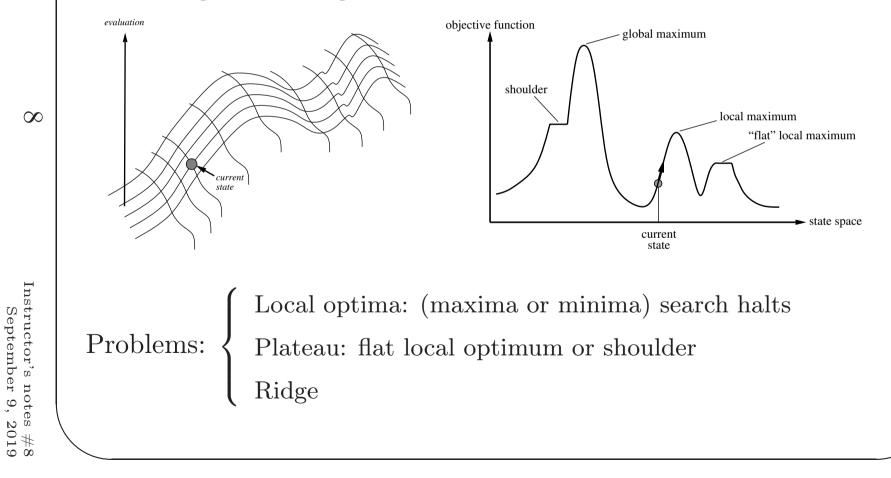
(eroding myth)

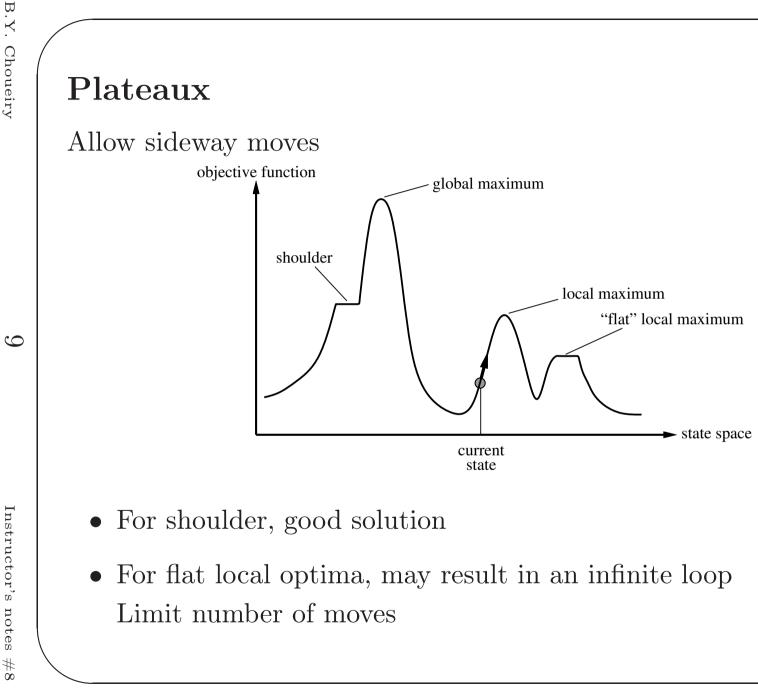
Hill climbing

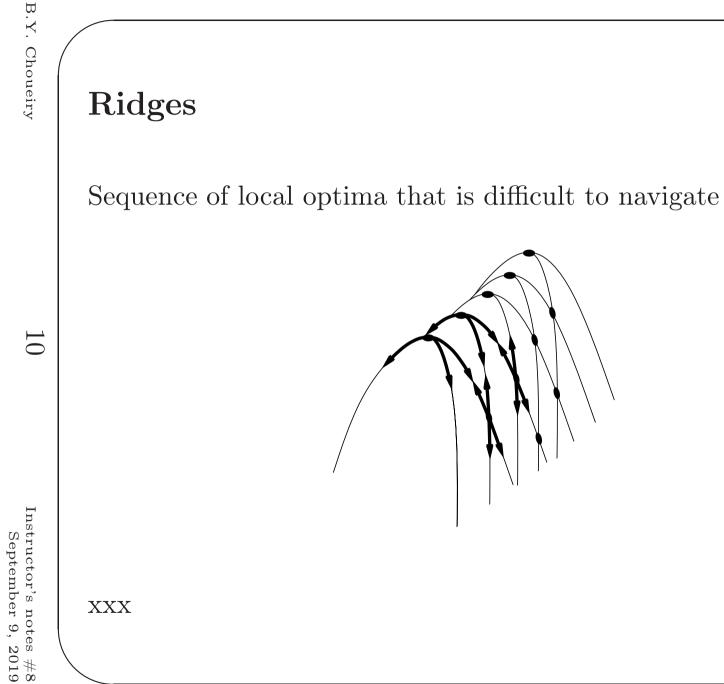
Start from any state at random and loop:

Examine all direct neighbors

If a neighbor has higher value then move to it else exit







Variants of Hill Climbing

- Stochastic hill climbing: random walk Choose to disobey the heuristic, sometimes Parameter: How often?
- First-choice hill climbing
 Choose first best neighbor examined
 Good solution when we have too many neighbors
- Random-restart hill climbing A series of hill-climbing searches from random initial states

Random-restart hill-climbing

 \rightarrow When HC halts or no progress is made re-start from a different (randomly chosen) starting save best results found so far

 \rightarrow Repeat random restart

- for a fixed number of iterations, or
- until best results have not been improved for a certain number of iterations

12

Simulated annealing (I)

Basic idea: When stuck in a local maximum allow few steps towards less good neighbors to escape the local maximum

Start from any state at random, start count down and loop until time is over:

Pick up a neighbor at <u>random</u>

Set $\Delta E = value(neighbor) - value(current state)$

If $\Delta E > 0$ (neighbor is better)

then move to neighbor

else $\Delta E{<}0$ move to it with probability <1

Transition probability $\simeq e^{\Delta E/T} \begin{cases} \Delta E \text{ is negative} \\ T: \text{ count-down time} \end{cases}$ as time passes, less and less likely to make the move towards 'unattractive' neighbors

13

Simulated annealing (II)

Analogy to physics:

Gradually cooling a liquid until it freezes If temperature is lowered sufficiently slowly, material will attain lowest-energy configuration (perfect order)

Count down \longleftrightarrow Temperature

- Moves between states \leftrightarrow Thermal noise
 - Global optimum \leftrightarrow Lowest-energy configuration

How about decision problems?

Optimization problems

Iterative improvement

State value \leftarrow

Decision problems

- \longleftrightarrow Iterative repair
- alue \leftrightarrow Number of constraints violated
- Sub-optimal state
- \longleftrightarrow Inconsistent state
 - Optimal state \iff Consistent state

15

Local beam search

- Keeps track of k states
- Mechanism:
 - Begins with k states

At each step, all successors of all k states generated Goal reached? Stop.

Otherwise, selects k best successors, and repeat.

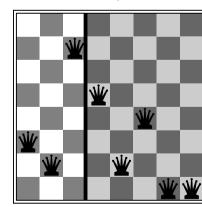
- Not exactly a k restarts: k runs are not independent
- <u>Stochastic</u> beam search increases diversity

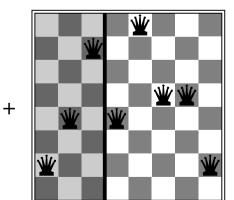
Genetic algorithms

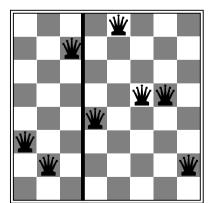
- Basic concept: combines two (parent) states
- Mechanism:

Starts with k random states (population) Encodes individuals in a compact representation (e.g., a string in an alphabet)

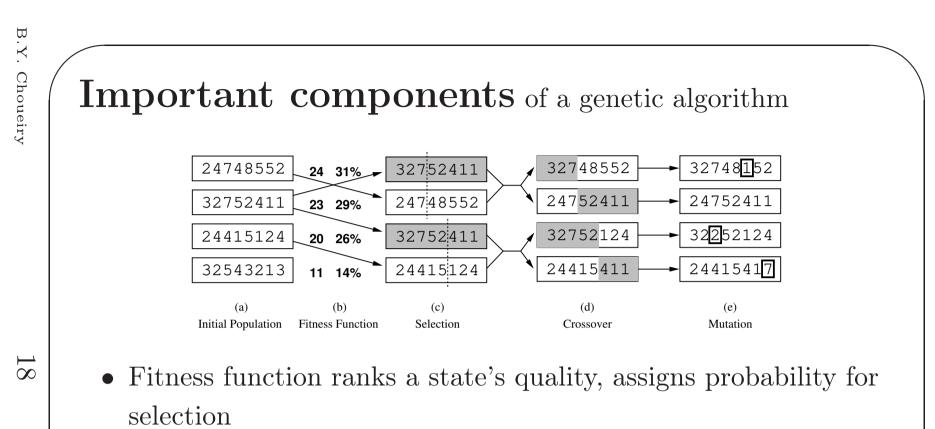
Combines partial solutions to generate new solutions (next generation)







=



- Selection randomly chooses pairs for combinations depending on fitness
- Crossover point randomly chosen for each individual, offsprings are generated
- Mutation randomly changes a state