
✬✫

✩✪

Title: Solving Problems by Searching

AIMA: Chapter 3 (Sections 3.1, 3.2 and 3.3)

Introduction to Artificial Intelligence

CSCE 476-876, Fall 2019

URL: www.cse.unl.edu/~choueiry/F19-476-876

Berthe Y. Choueiry (Shu-we-ri)

(402)472-5444

B
.Y

.
C

h
o
u
e
ir

y
1

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Summary

Intelligent Agents

• Designing intelligent agents: PAES

• Types of Intelligent Agents

1. Self Reflex

2. ?

3. ?

4. ?

• Types of environments: observable (fully or partially),

deterministic or stochastic, episodic or sequential, static vs.

dynamic, discrete vs. continuous, single agent vs. multiagent

B
.Y

.
C

h
o
u
e
ir

y
2

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Outline

• Problem-solving agents

• Formulating problems

– Problem components

– Importance of modeling

• Search

– basic elements/components

– Uninformed search (Section 3.4)

– Informed (heuristic) search (Section 3.5)

B
.Y

.
C

h
o
u
e
ir

y
3

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Simple reflex agent unable to plan ahead

- actions limited by current percepts

- no knowledge of what actions do

- no knowledge of what they are trying to achieve

Problem-solving agent: goal-based agent

Given:

- a problem formulation: a set of states and a set of actions

- a goal to reach/accomplish

Find:

- a sequence of actions leading to goal

B
.Y

.
C

h
o
u
e
ir

y
4

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Example: Holiday in Romania

On holiday in Romania, currently in Arad, want to go to Bucharest

B
.Y

.
C

h
o
u
e
ir

y
5

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Example: On holiday in Romania, currently in Arad, want to go

to Bucharest

Formulate goal:

be in Bucharest

Formulate problem:

states: various cities

actions: (operators, successor function) drive between cities

Find solution:

sequence of cities, e.g. Arad, Sibiu, Fagaras, Bucharest

B
.Y

.
C

h
o
u
e
ir

y
6

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Drive to Bucharest... how many roads out of Arad?

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Use map to consider hypothetical journeys through each road until

reaching Bucharest

B
.Y

.
C

h
o
u
e
ir

y
7

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Looking for a sequence of actions −→ search

Sequence of actions to goal −→ solution

Carrying out actions −→ execution phase

Formulate, search, execute

B
.Y

.
C

h
o
u
e
ir

y
8

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Formulate, search, execute

× Update-State × Formulate-goal
√

Formulate-Problem
√

Search

Recommendation = first, and Remainder = rest

Assumptions for environment: observable, static, discrete, deterministic

sequential, single-agent

B
.Y

.
C

h
o
u
e
ir

y
9

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Problem formulation

A problem is defined by the following items:

1. initial state: In(Arad)

2. successor function S(x) (operators, actions)

Example, S(In(Arad)) = {〈Go(Sibiu), In(Sibiu)〉,

〈Go(T imisoara), In(T imisoara)〉, 〈Go(Zerind), In(Zerind)〉}

3. goal test, can be explicit, e.g., x = In(Bucharest)

or a property NoDirt(x)

4. step cost: assumed non-negative

5. path cost (additive)

e.g., sum of distances, number of operators executed, etc.

A solution is a sequence of operators leading from the initial state

to a goal state.

Solution quality, optimal solutions.

B
.Y

.
C

h
o
u
e
ir

y
1
0

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Importance of modeling (for problem formulation)

Real art of problem solving is modeling,

deciding what’s in







state description

action description

choosing the right level of abstraction

State abstraction: road maps, weather forecast, traveling

companions, scenery, radio programs, ...

Action abstraction: generate pollution, slowing down/speeding

up, time duration, turning on the radio, ..

Combinatorial explosion. Abstraction by removing irrelevant detail

make the task easier to handle

B
.Y

.
C

h
o
u
e
ir

y
1
1

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

State space vs. state set

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

1 2

87

5 6

3 4

B
.Y

.
C

h
o
u
e
ir

y
1
2

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Example problems

Toy Problems:

→ intended to illustrate or exercise







concepts

problem-solving methods
√

can be give concise, exact description
√

researchers can compare performance of algorithms

× yield methods that rarely scale-up

× may reflect reality inaccurately (or not at all)

Real-world Problems:

→ more difficult but whose solutions people actually care about
√

more credible, useful for practical settings

× difficult to model, rarely agreed-upon descriptions

B
.Y

.
C

h
o
u
e
ir

y
1
3

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Toy problem: vacuum Single state case

States:

Initial State:

Successor function:

Goal test:

Path cost:

With 2 locations: 2.22 states. With n locations: n.2n states

B
.Y

.
C

h
o
u
e
ir

y
1
4

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Toy problem: 8-puzzle

States:

Initial state:

Successor function:

Goal test:

Path cost:

→ instance of sliding-block puzzles, known to be NP-complete

→ Optimal solution of n-puzzle NP-hard

→ so far, nothing better than search

→ 8-puzzle, 15-puzzle traditionally used to test search algorithms

B
.Y

.
C

h
o
u
e
ir

y
1
5

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Toy problem: n-Queens

→ Formulation: incremental vs. complete-state

States: Any arrangement of x ≤ 8 queens on board

Initial state:

Successor function: add a queen (alt., move a queen)

Goal test: 8 queens not attacking one another

Path cost: irrelevant (only final state matters)

→ 648 possible states, but ∃ other more effective formulations

B
.Y

.
C

h
o
u
e
ir

y
1
6

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Toy problems: requiring search

√
8 puzzles

√
n-queens

√
vacuum

Others: Missionaries & cannibals, farmer’s dilemma, etc.

B
.Y

.
C

h
o
u
e
ir

y
1
7

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Real-world problems: requiring search

• Route finding: state = locations, actions = transitions

routing computer networks, travel advisory, etc.

• Touring: start in Bucharest, visit every city at least once

Traveling salesperson problem (TSP) (exactly once, shortest tour)

• VLSI layout: cell layout, channel layout

minimize area and connection lengths to maximize speed

• Robot navigation (continuous space, 2D, 3D, ldots)

• Assembly by robot-arm

States: robot joint angles, robot and parts coordinates

Successor function: continuous motions of the robot joins

goal test: complete assembly

path cost: time to execute

• + protein design, internet search, etc. (check AIMA)

B
.Y

.
C

h
o
u
e
ir

y
1
8

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Problem solving performance

Measures for effectiveness of search:

1. Does it find a solution? complete

2. Is it a good solution? path cost low

3. Search cost? time & space

Total cost = Search cost + Path cost

−→ problem?

Example: Arad to Bucharest

Path cost: total mileage, fuel, tire wear f(route), etc.

Search cost: time, computer at hand, etc.

B
.Y

.
C

h
o
u
e
ir

y
1
9

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

So far

• Problem-solving agents

Formulate, Search, Execute

• Formulating problems

– Problem components: States, Initial state, Successor

function, Goal test, Step cost, Path cost

Solution: sequence of actions from initial state to goal state

– Importance of modeling

Now, search

• Terminology: tree, node, expansion, fringe, leaf, queue, strategy

• Implementation: data structures

• Four evaluation criteria.. ?

B
.Y

.
C

h
o
u
e
ir

y
2
0

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Search: generate action sequences

partial solution: sequence yielding a (non goal) intermediate state

Search







generate

maintain







a set of sequences of partial solutions

Two aspects:

1. how to generate sequences

2. which data structures to keep track of them

B
.Y

.
C

h
o
u
e
ir

y
2
1

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Search generate action sequences

Basic idea:

offline, simulated exploration of state space

by generating successors of already-explored states

→ expanding states

Start from a state, test if it is a goal state

If it is, we are done

If it is not: expand state

Apply all operators applicable to current state to

generate all possible sequences of future states

now we have set of partial solutions

...

B
.Y

.
C

h
o
u
e
ir

y
2
2

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Lugoj AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Arad

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Search tree, nodes







root: initial state

leaves: states that can/should not be expanded

B
.Y

.
C

h
o
u
e
ir

y
2
3

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Data structure LHW Chapter 13

A node x has a parent, children, depth, path cost g(x)

A data structure for a search node






































State[x] state in state space

Parent −Node[x] parent node

Action[x] operator used to generate node

Path − Cost [x] path cost of parent+cost step, path cost g(x)

Depth[x] depth: # nodes from root (path length)

Nodes to be expanded














constitute a fringe (frontier)

managed in a queue,

order of node expansion determines search strategy

B
.Y

.
C

h
o
u
e
ir

y
2
4

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Warning:

1

23

45

6

7

81

23

45

6

7

8

Node
DEPTH = 6

STATE

PARENT-NODE

ACTION = right

PATH-COST = 6

Do not confuse: State space and Search (tree) space

Holiday in Romania:







































What is a state?

What is the state space?

What is the size of state space?

What is the size of search tree ?

A node has a parent, children, depth, path cost g(x)

A state has no parent, children, depth, etc..

B
.Y

.
C

h
o
u
e
ir

y
2
5

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Types of Search

Uninformed: use only information available in problem definition

Heuristic: exploits some knowledge of the domain

Uninformed search strategies:

Breadth-first search, Uniform-cost search, Depth-first search,

Depth-limited search, Iterative deepening search, Bidirectional

search

B
.Y

.
C

h
o
u
e
ir

y
2
6

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

✬✫

✩✪

Search strategies

Criteria for evaluating search:

1. Completeness: does it always find a solution if one exists?

2. Time complexity: number of nodes generated/expanded

3. Space complexity: maximum number of nodes in memory

4. Optimality: does it always find a least-cost solution?

Time/space complexity measured in terms of:

• b: maximum branching factor of the search tree

• d: depth of the least-cost solution

• m: maximum depth of the search space (may be ∞)

B
.Y

.
C

h
o
u
e
ir

y
2
7

I
n
s
t
r
u
c
t
o
r
’s

n
o
t
e
s

#
5

S
e
p
t
e
m

b
e
r

9
,
2
0
1
9

