Title: Adverserial Search AIMA: Chapter 5 (Sections 5.1, 5.2 and 5.3)

> Introduction to Artificial Intelligence CSCE 476-876, Fall 2019 URL: www.cse.unl.edu/~choueiry/F19-476-876

> > Berthe Y. Choueiry (Shu-we-ri) (402)472-5444

 \mathbf{H}

Outline

- Introduction
- Minimax algorithm
- Alpha-beta pruning

Instructor's notes #9 October 2, 2019

 \aleph

Context

- In an MAS, agents affect each other's welfare
- Environment can be cooperative or competitive
- Competitive environments yield adverserial search problems (games)
- Approaches: mathematical game theory and AI games

ಲು

B.Y. Choueiry

Game theory vs. AI

• AI games: fully observable, deterministic environments, players alternate, utility values are equal (draw) or opposite (winner/loser)

In vocabulary of game theory: deterministic, turn-taking, two-player, zero-sum games of perfect information

• Games are attractive to AI: states simple to represent, agents restricted to a small number of actions, outcome defined by simple rules

Not croquet or ice hockey, but typically board games Exception: Soccer (Robocup www.robocup.org/)

Board game playing: an appealing target of AI research

Board game: Chess (since early AI), Othello, Go, Backgammon, etc.

- Easy to represent

- Fairly small numbers of well-defined actions
- Environment fairly accessible
- Good abstraction of an enemy, w/o real-life (or war) risks :—)

Instructor's notes #9 October 2, 2019

But also: Bridge, ping-pong, etc.

 \mathcal{C}

Characteristics

- 'Unpredictable' opponent: contingency problem (interleaves search and execution)
- Not the usual type of 'uncertainty': no randomness/no missing information (such as in traffic) but, the moves of the opponent expectedly non benign
- Challenges:
 - huge branching factor
 - large solution space
 - Computing optimal solution is infeasible
 - Yet, decisions must be made. Forget $\mathbf{A}^*...$

Discussion

- What are the theoretically best moves?
- Techniques for choosing a good move when time is tight
 √ Pruning: ignore irrelevant portions of the search space
 × Evaluation function: approximate the true utility of a state
 without doing search

Instructor's notes #9 October 2, 2019

-1

Two-person Games

- 2 player: Min and Max
- Max moves first
- Players alternate until end of game
- Gain awarded to player/penalty give to loser

Game as a search problem:

- Initial state: board position & indication whose turn it is
- Successor function: defining legal moves a player can take Returns {(move, state)*}
- Terminal <u>test</u>: determining when game is over states satisfy the test: <u>terminal states</u>
- Utility function (a.k.a. payoff function): numerical value for outcome e.g., Chess: win=1, loss=-1, draw=0

Inst

 ∞

Usual search

Max finds a sequence of operators yielding a terminal goal scoring winner according to the utility function

Game search

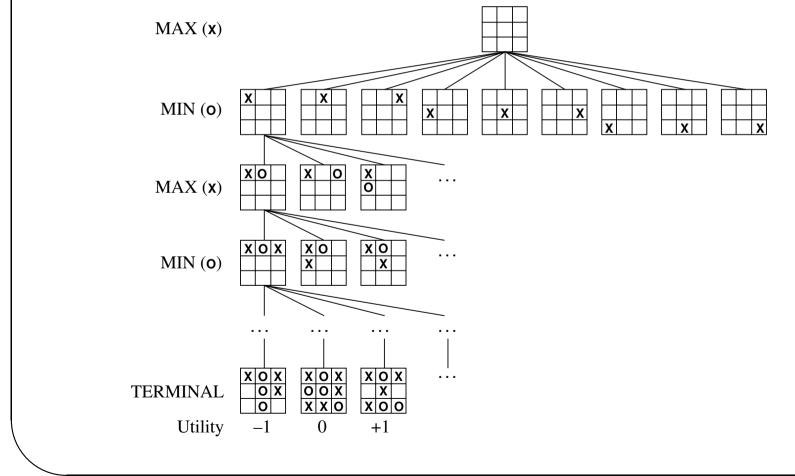
- Min actions are significant
 - Max must find a <u>strategy</u> to win regardless of what Min does: \rightarrow correct action for Max for each action of Min
- Need to approximate (no time to envisage all possibilities difficulty): a huge state space, an even more huge search space e.g., chess: $\begin{cases} 10^{40} \text{ different legal positions} \\ \text{Average branching factor=35, 50 moves/player= 35}^{100} \end{cases}$
- Performance in terms of time is very important

 $\mathbf{0}$

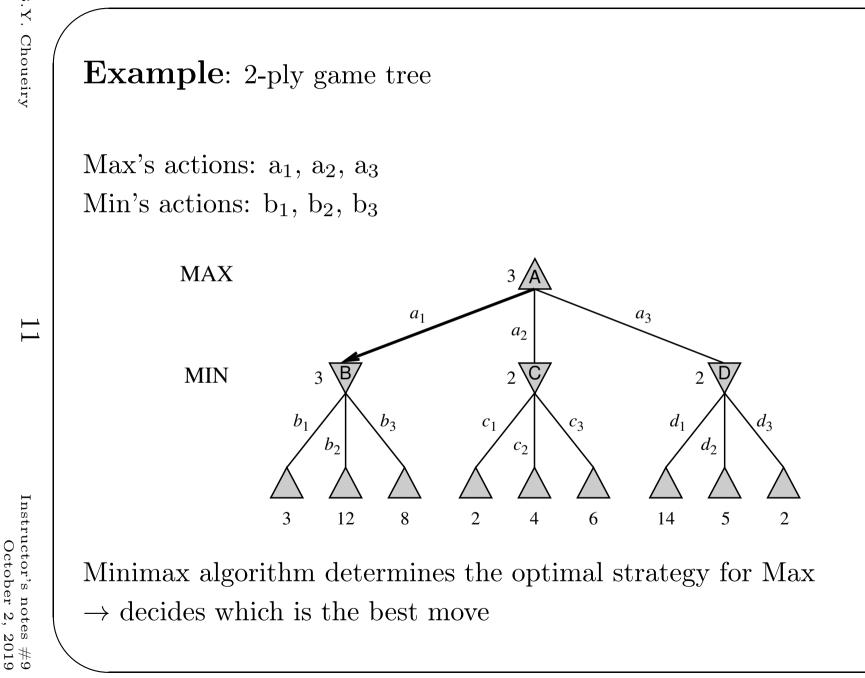
$Example: {\rm Tic-Tac-Toe}$

Max has 9 alternative moves

Terminal states' utility: Max wins=1, Max loses = -1, Draw = 0



10



Minimax algorithm

- Generate the \underline{whole} tree, down to the leaves
- Compute utility of each terminal state
- Iteratively, from the leaves up to the root, use utility of nodes at depth d to compute utility of nodes at depth (d-1): MIN 'row': minimum of children MAX 'row': maximum of children

```
MINIMAX-VALUE (n)
```

UTILITY(n)if n is a terminal node $max_{s \in Succ(n)}$ MINIMAX-VALUE(s)if n is a Max node $min_{s \in Succ(n)}$ MINIMAX-VALUE(s)if n is a Min node

12

Minimax decision

- MAX's decision: <u>minimax decision</u> maximizes utility under the assumption that the opponent will play perfectly to his/her own advantage
- Minimax decision maximes the worst-case outcome for Max (which otherwise is guaranteed to do better)
- If opponent is sub-optimal, other strategies may reach better outcome better than the minimax decision

Minimax algorithm: Properties

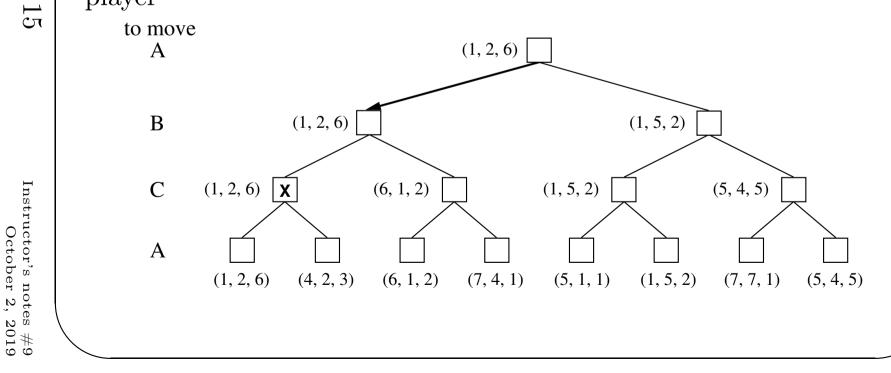
- *m* maximum depth *b* legal moves
- Using Depth-first search, space requirement is: O(bm): if generating all successors at once O(m): if considering successors one at a time
- Time complexity $O(b^m)$

Real games: time cost totally unacceptable

Multiple players games

UTILITY(n) becomes a vector of the size of the number of players

For each node, the vector gives the utility of the state for each player



Alliance formation in multiple players games

How about alliances?

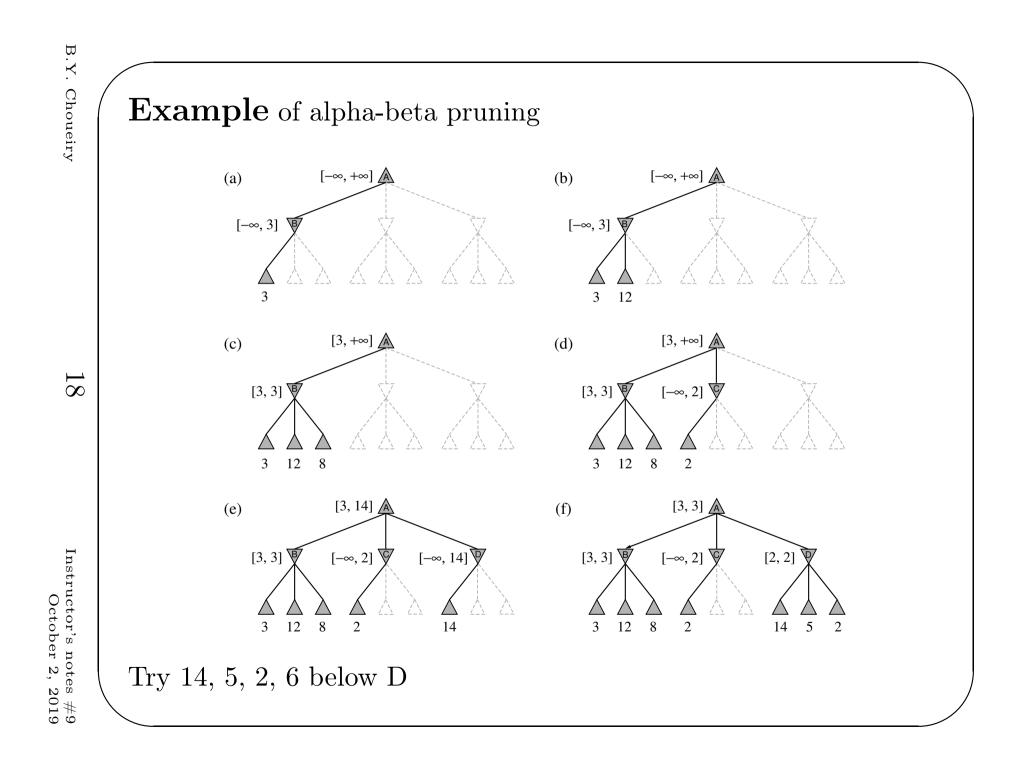
- A and B in weak positions, but C in strong position
 - A and B make an alliance to attack C (rather than each other
 - \rightarrow Collaboration emerges from purely selfish behavior!
- Alliances can be done and undone (careful for social stigma!)
- When a two-player game is not zero-sum, players may end up automatically making alliances (for example when the terminal state maximizes utility of both players)

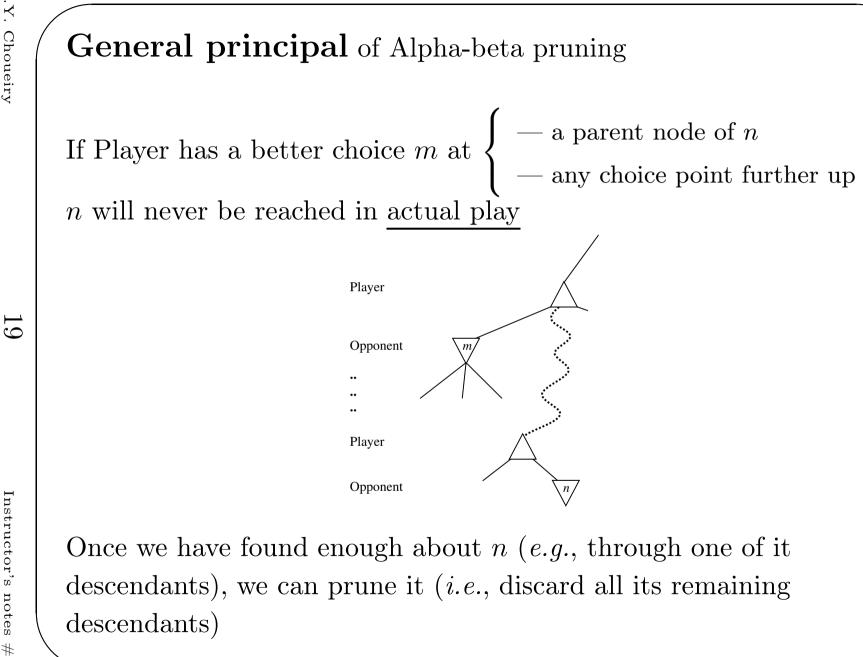
Alpha-beta pruning

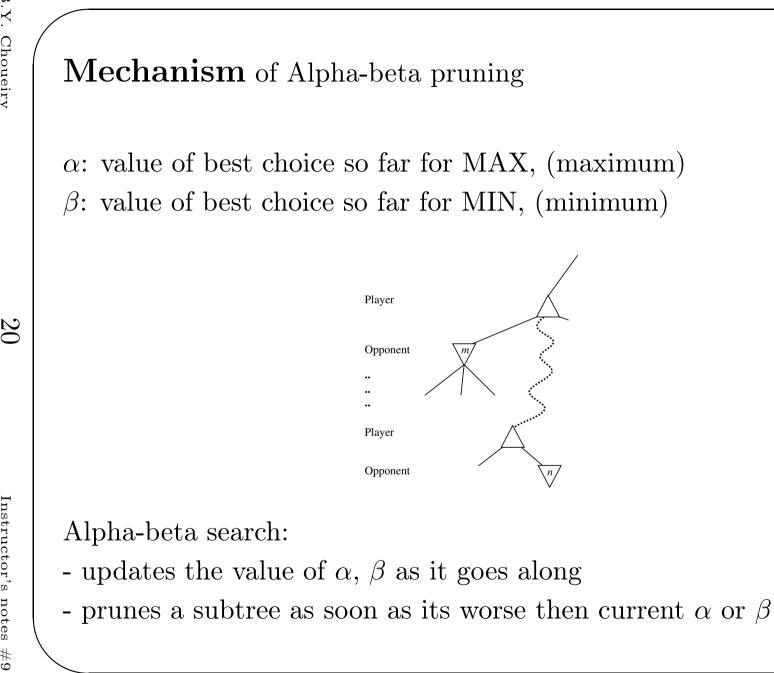
- Minimax requires computing all terminal nodes: unacceptable
- Do we really need to do compute utility of <u>all</u> terminal nodes? ... No, says John McCarthy in 1956:

It is possible to compute the correct minimax decision without looking at every node in the tree, and yet get the correct decision

• Use pruning (eliminating useless branches in a tree)



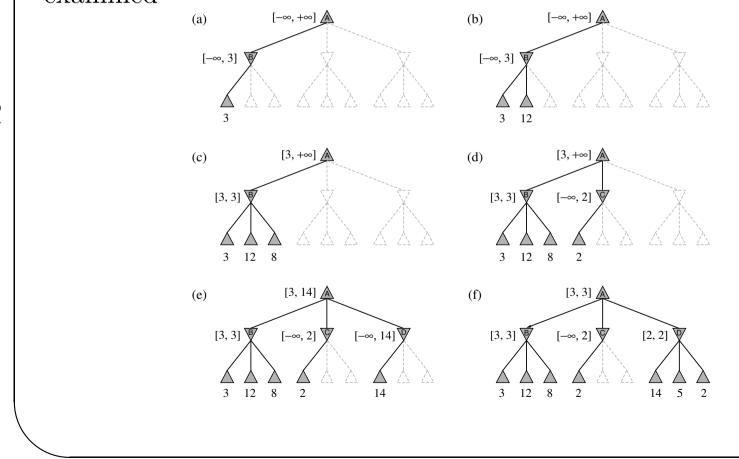




20

Effectiveness of pruning

Effectiveness of pruning depends on the order of new nodes examined



21

Savings in terms of cost

- Ideal case:
 - Alpha-beta examines $O(b^{d/2})$ nodes (vs. Minimax: $O(b^d)$) \rightarrow Effective branching factor \sqrt{b} (vs. Minimax: b)
- Successors ordered randomly:
 - b > 1000, asymptotic complexity is $O((b/\log b)^d)$ b reasonable, asymptotic complexity is $O(b^{3d/4})$
- Practically: Fairly simple heuristics work (fairly) well