Recitation

1 Simple scheduling problem

Consider the problem of scheduling five tasks: $T_{1}, T_{2}, T_{3}, T_{4}$, and T_{5}, each of which takes one hour to complete. The tasks may start at 1:00, 2:00, 3:00. Any number of tasks can be executed simultaneously provided the following restrictions are satisfied.

- T_{1} must start after T_{3}.
- T_{3} must start before T_{4} and after T_{5}.
- T_{2} cannot execute at the same time as T_{1}.
- T_{2} cannot execute at the same time as T_{4}.
- T_{4} cannot start at 2:00.

1. Formulate the problem as a CSP by stating: the variables, their domain, and the applicable constraints.
Hints: focus on the start time of a task.
2. Draw the constraint graph.
3. Apply arc-consistency to each constraint in the CSP until no values can be ruled out (i.e., the CSP becomes arc-consistent).

2 N -Queen Problem as a CSP

Consider the 4-queens problem where each queen is associated with a row and can be assigned to any column in the row.

1. Define this problem as a CSP. Specify the variables and their domain, and each binary constraint by 'extension.'
2. Define a binary constraint $C_{Q_{i}, Q_{j}}$ between two variables Q_{i} and Q_{j} by 'intension.'
3. What is the size of this CSP (which is the size of the search tree it may yield)?
4. Draw the constraint graph.
5. Arc-consistency of a binary constraint $C_{Q_{i}, Q_{j}}$ between two variables Q_{i} and Q_{j} ensures that every value for the variable Q_{i} has a support (at least one consistent value) in the domain of Q_{j} and vice-versa. Run manually arc-consistency on the 4 -Queens problem. Can you remove any value? At the end of the operation the CSP is said to be arc-consistent.
6. Arc-consistency is also called 2-consistency because it considers all combinations of two variables at the same time. Let's consider all combinations of 3 variables at the same time and let's check whether or not every value in the domain of a given variable has a support in the domain of the two other variables (simultaneously). If it does not, the value can be removed. Can you remove any value? This consistency property is called (1,2)-consistency.
