
CSCE476/876 Fall 2019

Homework 7

Assigned on: Friday, November 1st, 2019.

Due: Friday, November 15th, 2019.

Points: 100, plus a potential 20 bonus points in the main tract. Additionally, you have the option of
implementing a SAT solver for 100 additional bonus points.

Contents

1 AIMA, Exercise 7.1, page 279. (16 points) 1

2 AIMA, Exercise 7.7, page 281. (6 points) 1

3 Truth Tables (8 points) 1

4 AIMA, Exercise 7.10, page 281. (16 points) 1

5 Logical Equivalences (8 points) 2

6 AIMA, Exercise 7.22, page 284. (18 points + 20 bonus) 2

7 Proofs (28 points) 2

8 Bonus: Implementation, Solving SAT (100 points) 3

Alert: If you submit your homework handwritten, it must be absolutely neat or it will not be corrected. If
you type your homework (preferable), submit using webhandin.

1 AIMA, Exercise 7.1, page 279. (16 points)

2 AIMA, Exercise 7.7, page 281. (6 points)

3 Truth Tables (8 points)

Use truth tables to show that each of the following is a tautology.

1. (p ∧ q)→ ¬(¬p ∨ ¬q)

2. [Mary ∧ (Mary → Susy)]→ Susy

3. α→ [β → (α ∧ β)]

4. (a→ b)→ [(b→ c)→ (a→ c)]

4 AIMA, Exercise 7.10, page 281. (16 points)

Only b, c, d, e, f, and g.

1



5 Logical Equivalences (8 points)

Using a method of your choice, verify:

1. (α→ β) ≡ (¬β → ¬α) contraposition

2. ¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

3. (α ∧ (β ∨ γ)) ≡ ((α ∧ γ) ∨ (α ∧ β)) distributivity of ∧ over ∨

6 AIMA, Exercise 7.22, page 284. (18 points + 20 bonus)

Parts a, b, and c are required. Parts d, e, and f are bonus.

7 Proofs (28 points)

Give the explantions of each step if the steps are given, and give both the explanation and step if they are
not.

• If q ∧ (r ∧ p), t→ v, v → ¬p, then ¬t ∧ r.
Proof Explanations

1. q ∧ (r ∧ p) Given

2. t→ v Given

3. v → ¬p Given

4. t→ ¬p
5. (r ∧ p)
6. r

7. p

8. ¬¬p
9. ¬t

10. ¬t ∧ r

• If p→ (q ∧ r), q → s, and r → t, then p→ (s ∧ t).
Proof Explanations

1.

2.

3.

4.

5.

6.

7.

• Prove by contradiction.

If ¬(¬p ∧ q), p→ (¬t ∨ r), q, and t, then r.

Proof Explanations

1. ¬(¬p ∧ q) Given

2. p→ (¬t ∨ r) Given

2



3. q Given

4. t Given

5. ¬r Negation of Conclusion

6.

7.

8.

9.

10.

11.

12.

8 Bonus: Implementation, Solving SAT (100 points)

Write a search algorithm to determine the satisfiability of a SAT instance. You can either write:

• A DPLL procedure (backtrack search),

• A local search procedure.

You must

• Clearly describe, in addition to your code, your data structures, how your search algorithm operates,
and the improvements, if any, that you have included in your code.

• We recommend that you use the standard file for input files known as the ‘simplified version of the
DIMACS format’:
http://www.satcompetition.org/2009/format-benchmarks2009.html

• Test the performance of your algorithm on some non trivial uniform random instances taken from the
SAT Competition. For example:
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

Alert: many implementations exist in the literature and on the web. We expect you to do your own
implementation.

3


