## Homework 4

Assigned on: Monday September $30^{\text {th }}, 2019$.
Due: Monday, October $7^{\text {th }}, 2019$.
Except for the programming questions (i.e., Exercices 1 and 7), which must be submitted with webhandin as problem\#.lisp, you may turn in your homework on paper or type it and submit it to webhandin.

Value: 90 points for ugrads and 95 points for grads.

## 1 Implementing a simple-reflex agent.

## Total: 20 points

- Write in Common Lisp a function that 'models' the simple-reflex agent for the vacuum-cleaner problem in an environment with two locations, as summarized on page 5 of the Intructor's notes \#4. The function should take as input the percepts of the agent as location of the agent and status of the room.
- Write a Common Lisp function that takes any of the 8 possible states of the vacuum-cleamer of Figure 3.3 of AIMA and runs the simple-reflect agent until the goal is reached.
- Design a performance measure that penalizes the agent for each step and each suck action. Record the agent performance for each one of the above 8 possible states.


## 2 AIMA, Exercise 3.6, Page 113.

Total 10/15 points

- a: for ugrads and grads.

5 points

- b: for ugrads and grads.
- d: grads (bonus for ugrads).


## 3 AIMA, Exercise 3.15, Page 116.

Total: 10 points
4 Evaluation function. Total: 6 points

Adapted from AIMA, Edition 1.
With $g(n)$ being the path length,

1. Suppose that we run a greedy search algorithm with $h(n)=-g(n)$. What sort of search will the greedy search emulate?
Explain. 3 points
2. Suppose that we run a search algorithm with $h(n)=g(n)$. What sort of search will the greedy search emulate?
Explain. 3 points

5 AIMA, Exercise 3.21, Page 117.
6 AIMA, Exercise 3.23, Page 118.
7 AIMA, Exercise 3.30, Page 119.

- Question a
- Question b
- Question c: Optional challenge
- Question d: Optional challenge

Total: 9 points
Total: 10 points
Total: 15 points
10 points
5 points
15 bonus points
30 bonus points

## 8 Adverserial Search

5 points
Consider the following game tree:


1. Compute the minimax decision. Show your answer by writing the values at the appropriate nodes in the above tree.

## 9 Alpha-beta Pruning

Using the alpha-beta pruning method, with standard left-to-right evaluation of nodes, show what nodes are not examined by alpha-beta.


