Title: First-Order Logic

AIMA: Chapter 8 (Sections 8.1 and 8.2)

Section 8.3, discussed briefly, is also required reading

Introduction to Artificial Intelligence CSCE 476-876, Spring 2016

URL: www.cse.unl.edu/~choueiry/S16-476-876

Berthe Y. Choueiry (Shu-we-ri) (402) 472-5444

Outline

- First-order logic:
 - basic elements
 - syntax
 - semantics
- Examples

N

Pros and cons of propositional logic

- Propositional logic is <u>declarative</u>: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information
 (unlike most data structures and databases)
- Propositional logic is <u>compositional</u>: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is <u>context-independent</u> (unlike natural language, where meaning depends on context)
- but...

Propositional logic has very limited expressive power E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

4

Propositional Logic

- is simple
- illustrates important points: model, inference, validity, satisfiability, ...
- is restrictive: world is a set of facts
- lacks expressiveness:
 - \rightarrow In PL, world contains <u>facts</u>

First-Order Logic

- more symbols (objects, properties, relations)
- more connectives (quantifier)

First Order Logic

- → FOL provides more "primitives" to express knowledge:
 - objects (identity & properties)
 - relations among objects (including functions)

Objects: people, houses, numbers, Einstein, Huskers, event, ...

Properties: smart, nice, large, intelligent, loved, occurred, ...

Relations: brother-of, bigger-than, part-of, occurred-after, ...

Functions: father-of, best-friend, double-of, ...

Examples:

(objects? function? relation? property?)

— one plus two equals four

[sic]

— squares neighboring the wumpus are smelly

Logic

Attracts: mathematicians, philosophers and AI people

Advantages:

- allows to represent the world and reason about it
- expresses anything that can be programmed

Non-committal to:

- symbols could be objects or relations (e.g., King(Gustave), King(Sweden, Gustave), Merciless(King))
- classes, categories, time, events, uncertainty
- .. but amenable to extensions: OO FOL, temporal logics, situation/event calculus, modal logic, etc.
- → Some people think FOL *is* the language of AI true/false? donno :—(but it will remain around for some time..

 \neg

Types of logic

Logics are characterized by what they commit to as "primitives"

Ontological commitment:

what exists—facts? objects? time? beliefs?

Epistemological commitment:

what states of knowledge?

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts degree of truth	true/false/unknown true/false/unknown true/false/unknown degree of belief 01 degree of belief 01

Higher-Order Logic: views relations and functions of FOL as objects

Syntax of FOL: words and grammar

The words: symbols

- Constant symbols stand for objects: QueenMary, 2, UNL, etc.
- Variable symbols stand for objects: x, y, etc.
- Predicate symbols stand for relations: Odd, Even, Brother, Sibling, etc.
- Function symbols stand for functions (viz. relation) Father-of, Square-root, LeftLeg, etc.
- Quantifiyers \forall , \exists
- Connectives: \land , \lor , \neg , \Rightarrow , \Leftrightarrow ,
- (Sometimes) equality =

Predicates and functions can have any arity (number of arguments)

Basic elements in FOL (i.e., the grammar)In propositional logic, every expression is a sentence

In FOL,

- Terms
- Sentences:
 - atomic sentences
 - complex sentences
- Quantifiers:
 - Universal quantifier
 - Existential quantifier

Term

logical expression that refers to an object

— built with: constant symbols, variables, function symbols

Term = $function(term_1, ..., term_n)$

or constant or variable

— **ground term**: term with no variable

Atomic sentences

state facts

built with terms and predicate symbols

Atomic sentence = $predicate(term_1, ..., term_n)$ or $term_1 = term_2$

Examples:

Brother (Richard, John)
Married (FatherOf(Richard), MotherOf(John))

Instructor's notes #13 April 8, 2016

Complex Sentences

built with atomic sentences and logical connectives

 $\neg S$

 $S_1 \wedge S_2$

 $S_1 \vee S_2$

 $S_1 \Rightarrow S_2$

 $S_1 \Leftrightarrow S_2$

Examples:

 $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$

$$>(1,2) \lor \le (1,2)$$

$$>(1,2) \land \neg >(1,2)$$

[2

 $\begin{array}{c} \text{Instructor's notes } \#13 \\ \text{April 8, 2016} \end{array}$

Truth in first-order logic: Semantic

Sentences are true with respect to a <u>model</u> and an interpretation

Model contains objects and relations among them

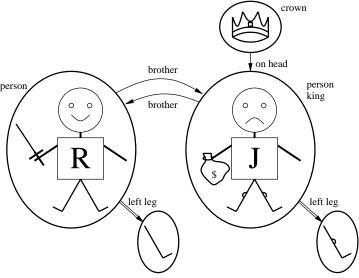
Interpretation specifies referents for

 $constant \ symbols \rightarrow objects$

 $predicate\ symbols \rightarrow \underline{\text{relations}}$

 $function \ symbols \rightarrow \underline{\text{functional relations}}$

An atomic sentence $predicate(term_1, ..., term_n)$ is true iff the <u>objects</u> referred to by $term_1, ..., term_n$ are in the <u>relation</u> referred to by predicate



The <u>domain</u> of a model is the set of objects it contains: five objects

Intended interpretation: Richard refers Richard the Lion Heart, John refers to Evil King John, Brother refers to brotherhood relation, etc.

14

Instructor's notes #13April 8, 2016

Models for FOL: Lots!

We can enumerate the models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary For each possible k-ary relation on n objects For each constant symbol C in the vocabulary For each choice of referent for C from n objects ...

Computing entailment by enumerating models is not going to be easy!

There are many possible interpretations, also some model domain are not bounded

— Checking entailment by enumerating is not an option

Quantifiers

allow to make statements about entire collections of objects

- universal quantifier: make statements about everything
- existential quantifier: make statements about some things

Universal quantification

 $\forall \langle variables \rangle \langle sentence \rangle$

Example: all dogs like bones $\forall x Dog(x) \Rightarrow LikeBones(x)$ x = Indy is a dog x = Indiana Jones is a person

 $\forall x P$ is equivalent to the conjunction of <u>instantiations</u> of P

 $Dog(Indy) \Rightarrow LikeBones(Indy)$

 $\land Dog(Rebel) \Rightarrow LikeBones(Rebel)$

 $\land Dog(KingJohn) \Rightarrow LikeBones(KingJohn)$

Λ ...

Typically: \Rightarrow is the main connective with \forall

Common mistake: using \wedge as the main connective with \forall

Example: $\forall x \ Dog(x) \land LikeBones(x)$

all objects in the world are dogs, and all like bones

Existential quantification

 $\exists \langle variables \rangle \langle sentence \rangle$

Example: some student will talk at the TechFair

 $\exists xStudent(x) \land TalksAtTechFair(x)$

Pat, Leslie, Chris are students

 $\exists \ x \ P$ is equivalent to the disjunction of <u>instantiations</u> of P

 $Student(Pat) \land TalksAtTechFair(Pat)$

 $\lor Student(Leslie) \land TalksAtTechFair(Leslie)$

 $\lor Student(Chris) \land TalksAtTechFair(Chris)$

V ...

Typically: \wedge is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists

 $\exists x \ Student(x) \Rightarrow TalksAtTechFair(x)$

is true if there is anyone who is not Student

Properties of quantifiers (I)

 $\forall x \ \forall y \ \text{is the same as} \ \forall y \ \forall x$

 $\exists x \; \exists y \text{ is the same as } \exists y \; \exists x$

 $\exists x \ \forall y \text{ is } \underline{\text{not}} \text{ the same as } \forall y \ \exists x$

 $\exists x \ \forall y \ Loves(x,y)$

"There is a person who loves everyone in the world"

 $\forall y \; \exists x Loves(x,y)$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

 $\forall x \ Likes(x, IceCream) \qquad \neg \exists x \ \neg Likes(x, IceCream)$

 $\exists x \ Likes(x, Broccoli)$ $\neg \forall x \ \neg Likes(x, Broccoli)$

Parsimony principal: \forall , \neg , and \Rightarrow are sufficient

Properties of quantifiers (II)

Nested quantifier:

$$\forall x(\exists y(P(x,y)):$$

every object in the world has a particular property, which is the property to be related to some object by the relation P

$$\exists x (\forall y(P(x,y)):$$

there is some object in the world that has a particular property, which is the property to be related to every object by the relation P

Lexical scoping: $\forall x[Cat(x) \lor \exists xBrother(Richard, x)]$

Well-formed formulas (WFF): (kind of correct spelling) every variable must be introduced by a quantifier $\forall x P(y)$ is not a WFF

.

"Sibling" is symmetric

.

One's mother is one's female parent

.

A first cousin is a child of a parent's sibling

21

Instructor's notes #13 April 8, 2016 22

Examples

•

 $\forall x, y \ Brother(x, y) \Rightarrow Sibling(x, y)$

•

 $\forall x, y \ Sibling(x, y) \Rightarrow Sibling(y, x)$

.

 $\forall x, y \; Mother(x, y) \Rightarrow (Female(x) \land Parent(x, y))$

.

 $\forall x, y \ FirstCousin(x, y) \Leftrightarrow$

 $\exists a, b \; Parent(a, x) \land Sibling(a, b) \land Parent(b, y)$

Tricky example

Someone is loved by everyone

 $\exists x \ \forall y \ Loves(y, x)$

Someone with red-hair is loved by everyone

 $\exists x \ \forall y \ Redhair(x) \land Loves(y, x)$

Alternatively:

 $\exists x \ Person(x) \land Redhair(x) \land (\forall y \ Person(y) \Rightarrow Loves(y, x))$

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object Examples

- Father(John)=Henry
- 1 = 2 is satisfiable
- 2 = 2 is valid
- Useful to distinguish two objects:
 - Definition of (full) Sibling in terms of Parent:

 $\forall x, y \; Sibling(x, y) \Leftrightarrow [\neg(x = y) \land \exists m, f \neg (m = y)] \land \exists m, f \neg (m = y) \land ($

 $f) \wedge Parent(m, x) \wedge Parent(f, x) \wedge Parent(m, y) \wedge Parent(f, y)]$ – Spot has at least two sisters: ...

AIMA, Exercise 8.4. Write: "All Germans speak the same languages," where Speaks(x, l) means that person x speaks language l.

Knowledge representation (KR)

Domain: a section of the world about which we wish to express some knowledge

Example: Family relations (kinship):

- Objects: people

- Properties: gender, married, divorced, single, widowed

- Relations: parenthood, brotherhood, marriage...

Unary predicates: Male, Female

Binary relations: Parent, Sibling, Brother, Child, etc.

Functions: Mother, Father

 $\forall m, c, Mother(c) = m \Leftrightarrow Female(m) \land Parent(m, c)$

In Logic (informally)

• Basic facts: <u>axioms</u> (definitions)

• Derived facts: **theorems**

Independent axiom

an axiom that cannot be derived from the rest

 \longrightarrow Goal of mathematicians: find the minimal set of independent axioms

In AI

- Assertions: sentences added to a KB using TELL
- Queries or goals: sentences asked to KB using ASK

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB, Percept([Smell, Breeze, None], 5)) $Ask(KB, \exists aAction(a, 5))$

I.e., does the KB entail any particular actions at t = 5?

Answer: $Yes, \{a/Shoot\} \leftarrow \underline{\text{substitution}} \text{ (binding list)}$

Given a sentence S and a substitution σ ,

 $S\sigma$ denotes the result of plugging σ into S; e.g.,

S = Smarter(x, y)

 $\sigma = \{x/Hillary, y/Bill\}$

 $S\sigma = Smarter(Hillary, Bill)$

Ask(KB, S) returns some/all σ such that $KB \models S\sigma$

```
Prepare for next lecture: AIMA, Exercise 8.24, page 319
```

Takes(x, c, s): student x takes course c in semester s

Passes(x, c, s): student x passes course c in semester s

Score(x, c, s): the score obtained by student x in course c in semester s

x > y: x is greater that y

F and G: specific French and Greek courses

Buys(x, y, z): x buys y from z

Sells(x, y, z): x sells y from z

Shaves(x, y): person x shaves person y

Born(x, c): person x is born in country c

Parent(x, y): person x is parent of person y

Citizen(x, c, r): person x is citizen of country c for reason r

Resident(x,c): person x is resident of country c of person y

Fools(x, y, t): person x fools person y at time t

Student (x), Person(x), Man(x), Barber(x), Expensive(x), Agent(x),

Insured(x), Smart(x), Politician(x),

AI Limerick

If your thesis is utterly vacuous

Use first-order predicate calculus

With sufficient formality

The sheerest banality

Will be hailed by the critics: "Miraculous!"

Henry Kautz

In Canadian Artificial Intelligence, September 1986

head of AI at AT&T Labs-Research

Program co-chair of AAAI-2000

 $Professor\ at\ University\ of\ Washington,\ Seattle$

Founding Director of Institute for Data Science and Professor at University of Rochester