CSCE476/876 Fall 2017

Homework 6

Assigned on: Friday, October 20, 2017.

Due: Friday, October 27, 2017.

Points: 120 points + up to 20 bonus

Contents

1	SAT Modeling	(15 Points)	2
	1.1 Scenario A (5 Points)		2
	1.2 Scenario B (5 Points)		2
	1.3 Scenario C (5 Points)		
2	AIMA, Exercise 7.1, page 279.	(16 points)	3
3	AIMA, Exercise 7.2, page 280.	(5 points)	3
4	AIMA, Exercise 7.7, page 281.	(6 points)	3
5	Truth Tables	(8 points)	3
6	AIMA, Exercise 7.10, page 281.	(16 points)	3
7	Logical Equivalences	(8 points)	3
8	AIMA, Exercise 7.22, page 284. (18 points	+ 20 bonus)	3
9	Proofs	(28 points)	3

Alert: If you submit your homework handwritten, it must be *absolutely neat* or it *will not* be corrected. If you type your homework (preferable), submit using webhandin.

1 SAT Modeling

(15 Points)

For each of the following scenarios, write a CNF formula to describe the scenario and complete the following four steps:

- 1. First state the propositions and what they represent.
- 2. State the sentence.
- 3. Explain the meaning of the clauses.
- 4. Is the sentence satisfiable? Explain why or why not.

1.1 Scenario A (5 Points)

Write a CNF formula to model the following scenario and complete the four steps from above:

- 1. There are four choices of desserts: ice cream, fruit bowl, cake, pie.
- 2. Exactly one dessert must be selected (i.e., one and only one).

1.2 Scenario B (5 Points)

Write a CNF formula to model the following scenario and complete the four steps from above:

- 1. Damon, Enrique, and Lois need to complete a paper and a presentation for a class.
- 2. To complete each task, they need to select a day to meet during the week (Mon, Tue, Wed, Thu, Fri).
- 3. Damon cannot meet on Monday. Further, he wants to complete the paper before the presentation and not both on the same day.
- 4. Enrique can meet any day but cannot meet on two consecutive days.
- 5. Lois wants to complete the presentation on or before Wednesday.

1.3 Scenario C (5 Points)

Write a CNF formula to model the following scenario and complete the four steps from above:

1. The four states (NE, IA, KS, MO) on the map shown in Figure 1 must be colored using three colors: red, green, and blue.

Figure 1: Four states (NE, IA, KS, MO)

- 2. Each state must be colored with exactly one color.
- 3. Adjacent states (i.e., states sharing a border line) cannot have the same color.

2 AIMA, Exercise 7.1, page 279. (16 points)

3 AIMA, Exercise 7.2, page 280. (5 points)

4 AIMA, Exercise 7.7, page 281. (6 points)

5 Truth Tables (8 points)

Use truth tables to show that each of the following is a tautology.

1. $(p \land q) \rightarrow \neg(\neg p \lor \neg q)$

 $2. \ [Mary \land (Mary \rightarrow Susy)] \rightarrow Susy$

3. $\alpha \to [\beta \to (\alpha \land \beta)]$

4. $(a \rightarrow b) \rightarrow [(b \rightarrow c) \rightarrow (a \rightarrow c)]$

6 AIMA, Exercise 7.10, page 281.

(16 points)

Only b, c, d, e, f, and g.

7 Logical Equivalences

(8 points)

Using a method of your choice, verify:

1. $(\alpha \to \beta) \equiv (\neg \beta \to \neg \alpha)$ contraposition

2. $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan

3. $(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \gamma) \vee (\alpha \wedge \beta))$ distributivity of \wedge over \vee

8 AIMA, Exercise 7.22, page 284.

(18 points + 20 bonus)

Parts a, b, and c are required. Parts d, e, and f are bonus.

9 Proofs (28 points)

Give the explanation of each step if the steps are given, and give both the explanation and step if they are not.

• If $q \wedge (r \wedge p), t \rightarrow v, v \rightarrow \neg p$, then $\neg t \wedge r$.

Proof Explanations

1. $q \wedge (r \wedge p)$

2. $t \to v$

3. $v \to \neg p$

4. $t \rightarrow \neg p$

5. $(r \wedge p)$

6. r

7. p

- 8. ¬¬*p*
- 9. $\neg t$
- 10. $\neg t \wedge r$
- If $p \to (q \land r), q \to s$, and $r \to t$, then $p \to (s \land t)$.

Proof Explanations

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- Prove by contradiction.

If $\neg(\neg p \land q), p \to (\neg t \lor r), q$, and t, then r.

Proof Explanations

- 1. $\neg(\neg p \land q)$
- $2. \ p \to (\neg t \vee r)$
- 3. q
- 4. t
- 5. $\neg r$
- 6.
- 7.
- 8.
- 9.
- 10. 11.
- 12.

- Given
 - Given
 - Given
 - Given
- Negation of Conclusion