Homework 1 Tutorial: Abscon, Webgrader, and the C++ XML
Parser

Robert Woodward
August 31, 2015

The goal of Homework 1 is to set-up your data-structures that you will be using for the homework
assignments in this class. The homework assignments build on one another so it is vital you give
your code a solid foundation. Knowing how to access your data-structures storing the CSP model
is an important step in being able complete the subsequent homework assignments. This tutorial
will give you a biref introduction to using Abscon and webgrader. It then also gives you a (very)
brief introduction to the C++ XML Parser.

1 Abscon Tutorial

Abscon will parse in XML files in the XCSP 2.1 format. This section of the tutorial will show
you how to utilize the existing parser and its data-structures in helping you create your own
data-structures for the homework assignment. The code provided here gives you one way to start
implementing the homework. You are not required to use any of the code here.

1. Download http://www.cril.univ-artois.fr/~lecoutre/research/tools/Tools2008.zip

2. Abscon has a XML parser for the XCSP 2.1 format located in “src/abscon/tools/InstanceParser.java”.
The InstanceParser class will load the XML file into various .

3. Create a new file “src/csp/MyParser.java” with contents:

package csp;

import csp.Variable;
import abscon.instance.tools.InstanceParser;
import abscon.instance.components.PConstraint;

import java.util.List;
import java.util.ArrayList;

public class MyParser {
private List<Variable> variables;
public MyParser(String filename) {
InstanceParser parser = new InstanceParser();
parser.loadInstance(filename);
parser.parse(false);

variables = new ArrayList<Variable>();

System.out.println("Instance name: <Not currently parsed! Need to modify the InstanceParser()>");


http://www.cril.univ-artois.fr/~lecoutre/research/tools/Tools2008.zip

System.out.println("Variables");

for(int i = 0; i < parser.getVariables().length; i++) {
// System.out.println(parser.getVariables() [i].getName());
Variable newVar = new Variable(parser.getVariables() [il);
System.out.println(newVar);
variables.add(newVar) ;

}

System.out.println("Constraints");

for(String key : parser.getMapOfConstraints().keySet()) {
PConstraint con = parser.getMapOfConstraints().get(key);
System.out.println(con.getName());

}
public static void main(String[] args) {
MyParser parser = new MyParser("./4queens-supports.xml");

}

And a new file “src/csp/Variable.java” with contents:

package csp;

import abscon.instance.tools.InstanceParser;
import abscon.instance.components.PVariable;

import java.lang.String;

public class Variable {
/// Keep a reference to the original variable, just in case it is needed later
protected PVariable varRef;
/// Best to create a *deep copy* of the data-structures that are needed for the homework
protected String name;

public Variable(PVariable var) {
varRef = var;
name = var.getName();

}

public String getName() {
return name;

}

public String toString() {
return "Name: " + name + ", initial-domain: x, constraints: x, neighbors: x";

}

4. Let’s make it compile into a jar file. Create a file “META-INF/MAINIFEST.MF” with
contents:

Manifest-Version: 1.0
Main-Class: csp/MyParser

And a Makefile:

all:
javac -J-Xmx256m -d bin -sourcepath src src/csp/MyParser.java src/abscon/instance/intension/*/*.java
jar -J-Xmx256m cfm csp.jar src/META-INF/MANIFEST.MF -C bin .

clean:
rm -rf bin/* csp.jar



5. We can now execute “make”, which makes csp.jar. We can execute the jar by running “java
-jar csp.jar”.

6. Notice, we still have lots to do for the homework assignment! You might find that the
InstanceParser class does not parse everything you want. For example: you need to print out
the instance name (given in the XML file), but the parser does not parse this in. You will
need to modify the method parsePresentation() in the InstanceParser to get access to this
information.

2 Webgrader

The webgrader executes the program that you have handed in on handin. Webgrader allows you
to see if your program works correctly outside of your personal computer, and is the same system
that the grader will use to evaluate your homework. You are encouraged to start handing in your
assignment early and use webgrader as a tool for testing the output of your program. You can
submit your code to handin multiple times.

1. You need to tell webgrader how to run your program, through a file called “runProgram.sh”.
We will create a file called “runProgram.sh”:

java -Xmx256m -jar csp.jar $@

2. Zip up the contents of the folder with your Makefile, runProgram.sh, and your source code.
The makefile and runProgram.sh files should be in the root of the zip. Do not include them
inside of a folder. (Note: We used a makefile earlier to compile our program. Webgrader can
also make using maven and ant, if you choose to use them instead.)

3. Handin the newly created zip file on handin https://cse-apps.unl.edu/handin/.

4. Open up webgrader https://cse.unl.edu/~cse421/grade/, and run the assignment.

3 Using the C++ Parser

An existing C++ XML Parser is available from http://www.cril.fr/~roussel/CSP-XML-parser/.
The parser includes a file called “examples/c++/example.cc” that shows an example of how to use
the C++ parser.

The parser uses a series of virtual functions (like “callbacks”) for when the parser finds certain
tags in the XCSP file. For example, the “addVariable()” function will give you a variable’s name
and domain-name. From here you can start to create your variable object for later use.

Some of the callbacks will not be used, and you will not have to handle them. For example,
anything with global constraints (but you will have to handle intension constraint predicates).


https://cse-apps.unl.edu/handin/
https://cse.unl.edu/~cse421/grade/
http://www.cril.fr/~roussel/CSP-XML-parser/

	Abscon Tutorial
	Webgrader
	Using the C++ Parser

