
Fall Semester, 2014 B.Y. Choueiry
CSCE 421/821: Foundations of Constraint Processing

Homework 6

FC-CBJ with Static and Dynamic Variable Ordering

Assigned: Wednesday, Nov 12, 2014

Due: Monday, Nov 24, 2014 (Wednesday, Nov 19, 2014 progress report due).

Total value: 80 points for undergrads 95 points for graduates. Penalty of 10 points for lack of clarity.

Notes: This homework must be done individually. If you receive help from anyone, you must clearly
acknowledge it. Always acknowledge sources of information (URL, book, class notes, etc.). Please
inform instructor quickly about typos or other errors.

Contents

1 Variable Ordering: Width 2
1.1 Definition of width of a graph . 2
1.2 Algorithm . 3

2 Implementing FC-CBJ 3
2.1 General Indications . 3
2.2 Running the Code . 4
2.3 Data Structures . 5
2.4 Modularity of the Code . 5

The goal of this homework is to first implement the hybrid FC-CBJ by mixing the procedures
investigated in the previous two homeworks; then to test the performance of the hybrid with the
four static and dynamic variable heuristics implemented in previous homework.

• Minimal width ordering: (15 points)
Bonus for undergraduate, mandatory for graduate students.
Implement the static variable-ordering heuristic called width (10 points) and include it in the
experiments (5 points).

• Implementing FC-CBJ with static variable-ordering heuristics (one and all solutions).
(20 points)

1

• Implementing FC-CBJ with dynamic variable-ordering heuristics (one and all solutions).
(20 points)

• Fill out the Excel sheet for the results obtained on the simple examples of Homework 2 and
share the results on the Wiki. (10 points)

• Comparing your results on BT, CBJ, FC (static and dynamic), FC-CBJ (static and dynamic)
for each instance, comment as thoroughly and critically as possible given the restricted number
of instances tested on the performance of:

– the algorithms, (5 points)

– the variable ordering heuristics, (5 points)

– the static and dynamic variable orderings, and (5 points)

– whether we are looking for one or all solutions. (5 points)

• Compare the performance of FC, and FC-CBJ using the same variable ordering heuristic for
each algorithm (the one that you think will perform the best for the algorithms). Report
the results, for finding one solution, obtained on the random CSP instances Case 17d of the
benchmarks. Draw three graphs, one for each {#CC,#NV,CPU}. (Bonus 20 points)

• Progress report (Due Wednesday, Nov 19, 2014): Submit a progress report documenting
how far along you are and submit some version of your code. (10 points)

1 Variable Ordering: Width

The notion of a the width of a graph is an important notion in Graph Theory with many applications
in Compute Science (CS) in general. In Theoretical of Databases, Bayesian Networks, Model
Checking, and Constraint Processing, various tractability results are drawn based on the notion of
bounded width (more precisely, tree width and hyper width) of the (hyper)graphs representing the
corresponding computational problems. Without going into much details now, we hope to address
that next semester in the course CSCE 921 Advanced Constraint Processing, we would like to
implement the very simple procedure that orders the variables for a CSP (i.e., the nodes of the
constraint graph) according to the minimum width ordering. The same (fortunately!) polynomial-
time algorithm can be used to compute the width of the graph and to find the corresponding
ordering. In backtrack-based search, this ordering has to be used as, of course, a static ordering.

1.1 Definition of width of a graph

First, let us revise the notion of the width of a graph.

• When you order the nodes of a graph linearly (as a vertical chain), the parents of a node are
the nodes that are its neighbors in the graph and appearing before it in the ordering.

• Given an ordering, the width of a node in the ordering is defined as the number of its parents
in the ordering.

2

• Given an ordering, the width of the ordering is defined as the maximum width of all nodes in
the ordering.

• Now, the width of a graph is defined as the minimum width of all its possible orderings.

If a graph has n vertices, it has n! possibly orderings. So, computing the width of the graph may
appear as a daunting task. Fortunately, there is a sound (i.e., correct) and efficient (i.e., polynomial
time) algorithm for computing the width of the graph. It runs in O(n2)

1.2 Algorithm

Below, we explain in plain English how the algorithm operates. Compute the degree of all the nodes
in the graph. Set the k, the current value of the width, to zero. Increment the value of the current
width and repeat the following until no nodes are left in the graph. While there are still nodes in the
graph, choose the node with the smallest degree in the graph (breaking ties lexicographically), set
the current value of the width to the degree of this node, remove the node from the graph deleting
all its incident edges and decrementing the degree of the neighbors of the removed nodes. Loop over
all the remaining nodes, iteratively removing all those nodes whose degree is smaller than or equal
to the value of the current width. Every time a node is removed, remove its incident edges and
decrement the degree of its adjacent nodes). When there are no nodes left in the graph, the width
of the graph is equal to the value of the current width and the ordering of minimal width is the
reverse of the order in which the nodes were removed. Below is the pseudocode of the algorithm:

Width (graph)

1: Remove from the graph all nodes that are not connected to any others
2: k ← 0
3: while there are nodes left in the graph do
4: k ← k + 1
5: while there are nodes connected to k or less other nodes do
6: remove them from the graph along with the edges incident to them
7: end while
8: end while
9: Return(k, the nodes in their elimination order)

Note that the minimum width ordering of the nodes is the reverse of their elimination order.

2 Implementing FC-CBJ

Below are some comments and indications to help you in your implementation of FC-CBJ.

2.1 General Indications

• Please make sure that you keep your code and protect your files. Your name, date, and course
number must appear in each file of code that you submit.

3

• All programs must be compiled, run, and tested on cse.unl.edu. Programs that do not run
correctly in this environment will not be accepted unless prior approval is obtained. You must
include a Makefile with your program so that your code can be compiled by issuing ‘make’
while on cse.unl.edu. You also must include a script called ‘runProgram.sh’ that contains
the command to run your program.

• You must submit a README file with precise steps on how to compile, run and test your
code. Failure to do so may result in no points for the homework.

• To facilitate debugging and the expectations of the homework assignment, web grader is set up
to quickly evaluate the correctness of your program: https://cse.unl.edu/~cse421/grade/.
After you have files submitted through webhandin, you will be able to run the web grader.

2.2 Running the Code

Your procedure(s) for FC-CBJ should take the parameters specifying the ordering heuristic: LD,
degree, or ddr. You are responsible for the dynamic ordering of the variables.

Specify the search algorithm BT, CBJ, FC or FC-CBJ by passing parameters to the program.
Your program should support BT and CBJ from the previous homeworks in addition to FC and
FC-CBJ. You are required to implement the following flags to specify the algorithm and the ordering
heuristic:

• -s BT for backtrack search

• -s CBJ for conflict directed backtrack search

• -s FC for forward checking

• -s FCCBJ for forward checking with conflict directed backtracking

• -u LX for lexicographical ordering heuristic

• -u LD for least domain ordering heuristic

• -u DEG for degree domain ordering heuristic

• -u DD for domain degree domain ordering heuristic

• -u W for width ordering heuristic

• -u dLD for dynamic least domain ordering heuristic

• -u dDEG for dynamic degree domain ordering heuristic

• -u dDD for dynamic domain degree domain ordering heuristic

• -f <filename> for the file of the CSP problem

Notice that exactly one -s, one -u and one -f flags are passed to the program. Failure to follow the
specification of the flags above may results in deduction of substantial amount of points.

Your output should be the same as in Homework 3/4/5. The output format that web grader
will check is in the following:

4

Instance name: XXX

Search: BT|CBJ|FC|FCCBJ

variable-order-heuristic: LX|LD|DEG|DD

var-static-dynamic: static|dynamic

value-ordering-heuristic: LX

val-static-dynamic: static

cc: XXX

nv: XXX

bt: XXX

cpu: XXX

First solution: <sequence of values for the variables in order to pass to the SolutionChecker>

all-sol cc: XXX

all-sol nv: XXX

all-sol bt: XXX

all-sol cpu: XXX

Number of solutions: XXX

where the XXX should be replaced with the corresponding values.

2.3 Data Structures

In this homework you are required to implement additional data structures to store, retrieve, and
maintain the past and future variables relative to assigned variables. Because these data structures
will be used extensively during search, you should consider an efficient implementation of these
functionalities. Irrespective of the programming language or the libraries of data structures you are
using, for acceptable performance implement operations on the data structures that take constant
time whenever possible. That is, every time you add or remove an element, the cost should be
constant whenever possible. Avoid traversing the list for addition or removal of items unless the
cost is negligible.

2.4 Modularity of the Code

FC and FC-CBJ follow the same procedure, with the difference that FC-CBJ performs the back-
tracking by possibly jumping over several levels. For this purpose, FC-CBJ maintains additional
data structures that FC does not.

Avoid implementing two separate procedures. Design your code carefully to have single FC
procedure, and extend it to FC-CBJ by switching the procedures within FC that implement FC-
CBJ. Invest some time to decide a good modularity level of your code that enables you to have
single FC procedure.

The advantage of this design will be visible during debugging. The algorithms might seem
simple, but there is substantial amount of detail that needs to be carefully handled. In case you
implement two separate procedures, you might end up debugging the same errors twice: once for
FC and once for FC-CBJ.

The above is a mere recommendation. You are not obliged to abide by it. No points will be
deducted if you implement two separate procedures for FC and FC-CBJ.

5

