
Constraints (2011) 16:250–282
DOI 10.1007/s10601-010-9103-2

Explaining the cumulative propagator

Andreas Schutt · Thibaut Feydy · Peter J. Stuckey ·
Mark G. Wallace

Published online: 27 August 2010
© Springer Science+Business Media, LLC 2010

Abstract The global cumulative constraint was proposed for modelling cumu-
lative resources in scheduling problems for finite domain (FD) propagation. Since
that time a great deal of research has investigated new stronger and faster filtering
techniques for cumulative, but still most of these techniques only pay off in
limited cases or are not scalable. Recently, the “lazy clause generation” hybrid
solving approach has been devised which allows a finite domain propagation engine
possible to take advantage of advanced SAT technology, by “lazily” creating a
SAT model of an FD problem as computation progresses. This allows the solver
to make use of SAT explanation and autonomous search capabilities. In this article
we show how, once we use lazy clause generation, modelling the cumulative
constraint by decomposition creates a highly competitive version of cumulative.
Using decomposition into component parts automatically makes the propagator
incremental and able to explain itself. We then show how, using the insights from
the behaviour of the decomposition, we can create global cumulative constraints
that explain their propagation. We compare these approaches to explaining the
cumulative constraint on resource constrained project scheduling problems. All

A preliminary version of this paper appears as [35].

A. Schutt (B) · T. Feydy · P. J. Stuckey
National ICT Australia, Department of Computer Science & Software Engineering,
The University of Melbourne, Melbourne, Victoria 3010, Australia
e-mail: aschutt@csse.unimelb.edu.au

T. Feydy
e-mail: tfeydy@csse.unimelb.edu.au

P. J. Stuckey
e-mail: pjs@csse.unimelb.edu.au

M. G. Wallace
School of Computer Science & Software Engineering, Monash University,
Clayton, Victoria 3800, Australia
e-mail: mark.wallace@infotech.monash.edu.au

Constraints (2011) 16:250–282 251

our methods are able to close a substantial number of open problems from the well-
established PSPlib benchmark library of resource-constrained project scheduling
problems.

Keywords Cumulative constraint · Explanations · Nogood learning ·
Lazy clause generation · Resource-constrained project scheduling problem

1 Introduction

Cumulative resources are part of many real-world scheduling problems. A resource
can represent not only a machine which is able to run multiple tasks in parallel but
also entities such as: electricity, water, consumables or even human skills. Those
resources arise for example in the resource-constrained project scheduling problem
Rcpsp, its variants, its extensions and its specialisations. A Rcpsp consists of tasks
(also called activities) consuming one or more resources, precedences between some
tasks, and resources. In this paper we restrict ourselves to the case of non-preemptive
tasks and renewable resources with a constant resource capacity over the planning
horizon. A solution is a schedule of all tasks so that all precedences and resource
constraints are satisfied. Rcpsp is an NP-hard problem [3].

Example 1 Consider a simple resource scheduling problem. There are 6 tasks a, b, c,
d, e and f to be scheduled to end before time 20. The tasks have respective durations
2, 6, 2, 2, 5 and 6, each respective task requiring 1, 2, 4, 2, 2 and 2 units of resource,
with a resource capacity of 5. Assume further that there are precedence constraints:
task a must complete before task b begins, written a� b, and similarly b� c, d�e.
Figure 1a shows the five tasks and precedences, while Fig. 1b shows a possible
schedule, where the respective start times are: 0, 2, 11, 0, 6, 0.

In 1993 Aggoun and Beldiceanu [1] introduced the global cumulative constraint
in order to efficiently solve complex scheduling problems in a constraint program-
ming framework. The cumulative constraint cannot compete with specific OR
methods for restricted forms of scheduling, but since it is applicable whatever the side
constraints are it is very valuable. Many improvements have been proposed to the
cumulative constraint: see e.g. Caseau and Laburthe [5], Carlier and Pinson [4],
Nuijten [29], Baptiste and Le Pape [2], and Vilím [38].

f

d

c

e

ba

source sink

0 2

a
b

4 6 8 10 12 14

cd

e

f

16 18 20

Fig. 1 a A small cumulative resource problem, with six tasks to place in the 5 × 20 box, with task
a before b before c, and task d before e. b A possible schedule

252 Constraints (2011) 16:250–282

The best known exact algorithm for solving Rcpsp is from Demeulemeester
and Herroelen [9]. Their specific method is a branch-and-bound approach relying
heavily on dominance rules and cut sets, a kind of problem specific nogoods. They
implicitly show the importance of nogoods to fathom the huge search space of
Rcpsp problems. Unfortunately, the number of cut sets grows exponentially in the
number of tasks, so that this method is considered to be efficient only for small
problems.

In general, nogoods are redundant constraints that are concluded during a conflict
analysis of an inconsistent solution state. They are permanently or temporary added
to the initial constraint system to reduce the search space, and/or to guide the
search. Nogoods are inferred from explanations and/or search decisions where an
explanation records the reason of value removals during propagation. Explanation
can be also used to short circuit propagation.

In comparison to the specific nogoods of Demeulemeester and Herroelen SAT
solvers records general nogoods. Since the introduction of cumulative, SAT
solving has improved drastically. Nowadays, modern SAT solvers can often handle
problems with millions of constraints and hundreds of thousands of variables. But
problems like Rcpsp are difficult to encode into SAT without breaking these implicit
limits. Recently, Ohrimenko et al. [30, 31] showed how to build a powerful hybrid
of SAT solving and FD solving that maintains the advantages of both: the high level
modelling and small models of FD solvers, and the efficient nogood recording and
conflict driven search of SAT. The key idea in this lazy clause generation approach
is that finite domain propagators lazily generate a clausal representation which is
an explanation of their behaviour. They show that this combination outperforms
the best available constraint solvers on Open-Shop-Scheduling problems which is
a special case of Rcpsp.

Global constraint can almost always be decomposed into simpler constraints by in-
troducing new intermediate variables to encode the meaning of the global constraint.
Since the introduction of cumulative in 1993 [1], little attention has been paid to
decompositions of cumulative because decomposition cannot compete with the
global propagator because of the overheads of intermediate variables, and the lack
of a global view of the problem. But once we consider explanation we have to revisit
this. Decomposition of globals means that explanation of behaviour is more fine
grained and hence more reusable. Also it avoids the need for complex explanation
algorithms to be developed for the global. Note that there is some preliminary work
on explanation generation for cumulative, in PaLM [16] where (in 2000) it is
described as current work, and [37] which restricts attention to the disjunctive
constraint (resource capacity 1).

In this paper we investigate how explanations for cumulative can improve
the solving of complex scheduling problems. We show first how decomposition of
cumulative can be competitive with state-of-the-art specialised methods from
the CP and OR community. We then show that building a global cumulative
propagator with specialised explanation capabilities can further improve upon the
explaining decompositions. The G12 Constraint Programming Platform is used for
implementation of the cumulative constraint as a lazy clause generator. We eval-
uate our approach on Rcpsp from the well-established and challenging benchmark
library PSPLib [22, 32].

Constraints (2011) 16:250–282 253

This article is organised as follows: In Section 2 the related work to the
cumulative constraint and explanation/nogoods is presented. In Section 3 lazy
clause generation is explained and the terminology is introduced. In Section 4 we
introduce the cumulative constraint. In Section 5 we show how to propagate the
cumulative constraint using decomposition. In Section 6 we show how to modify a
global cumulative constraint to explain its propagation. In Section 7 we introduce
resource constrained project scheduling problems and discuss search strategies for
tackling them. In Section 8 we give experimental results and finally in Section 9 we
conclude.

2 Related work

2.1 cumulative

In 1993 Aggoun and Beldiceanu [1] introduced the global cumulative constraint in
order to efficiently solve complex scheduling problems in a constraint programming
framework. For cumulative a simple consistency check and filtering algorithm
(time-table) with the time complexity O(n log n) is based on compulsory parts [24].
The overload check [39], another consistency check, also runs with the same time
complexity. There are more complex filtering techniques as follows.

In 1994 Nuijten [29] generalised the (extended) edge-finding, and not-first/not-
last filtering algorithm for the disjunctive propagator to the cumulative
propagator. All three algorithms detect the relationship between one task j and a
subset of tasks � excluding j by considering the task’s energy. (Extended) edge-
finding infers if the task j must strictly end after (start before) all tasks in �, not-first
if the task j must start after the end of at least one task in � and not-last if the task j
must end before the start of at least one task in �.

Nuijtens edge-finding was corrected by Mercier and Van Hentenryck [27] and
improved by Vilím [38] to the time complexity O(kn log n) in 2009 where k is the
number of different resource requirements of tasks. Nuijtens not-first/not-last al-
gorithm was corrected by Schutt et al. [36] and improved by Schutt [34] to time
complexity O(n2 log n) in 2006.

These filtering algorithms are based on reasoning about the energy of the tasks
[12]. As a consequence, they are more likely to propagate if the slack, i.e., free
available energy in some time interval, is small. Baptiste and Le Pape [2] showed
that the use of these algorithms is beneficial for highly cumulative problems1 but not
for highly disjunctive problems. They also present the left-shift/right-shift filtering
algorithm in the time complexity O(n3) which subsumes (extended) edge-finding,
but not not-first/not-last.

In 1996 Caseau and Laburthe [5] generalised the use of task intervals from the
disjunctive constraint to the cumulative constraint. A task interval is charac-
terised by two tasks i and j, and contains all tasks which earliest start time and latest
end time are included in the time window

[
start .. end

]
where start is the earliest start

time of i and end the latest end time of j. The number of task intervals is thus O(n2).

1Problems are called highly cumulative if many tasks can be run in parallel.

254 Constraints (2011) 16:250–282

The task intervals are incrementally maintained and used to check consistency,
propagate the lower (upper) bound of the start (end) variable by rule which covers
(extended) edge-finding, detect precedences between tasks and eliminate duration-
usage pairs if the energy for a task is given. Additionally, the compulsory part profiles
are incrementally tracked for the consistency check and the time-table filtering.

2.2 Explanations

There is a substantial body of work on explanations in constraint satisfaction
(see e.g. [8], chapter 6), but there was little evidence until recently of success for
explanations that combine with propagation (although see [17, 18]). The constraint
programming community revisited this issue after the success of explanations in the
SAT community.

Katsirelos and Bacchus [19] generalised the nogoods from the SAT community.
Their generalised nogoods are conjunction of variable-value equalities and disequali-
ties, e.g. {x1 = 3, x4 = 0, x7 �= 6}. For bound inference algorithms this representation
is not suitable since one bound update of a variable must be explained by several
nogoods.

The lazy clause generation approach proposed by Ohrimenko et al. [30] is a
hybrid of SAT and FD solvers. It keeps the abstraction of the constraints and their
propagators just explain their inferences to the SAT solvers. Moreover, their bounds
of integer variables are represented by Boolean literals so it is more suitable for
explaining a bound filtering algorithm. Feydy and Stuckey [13] re-engineered the
lazy clause generator approach by swapping of the master-slave role from SAT-FD
to FD-SAT.

In this paper we use lazy clause generation to implement a first version of an
explaining global cumulative constraint consisting of the time-table consistency
check and filtering algorithm. This constraint is compared to the two decompositions
which also use lazy clause generation on the parts of their decomposition.

There has been a small amount of past work on explaining the cumulative
constraint. Vilím [37] considered the disjunctive case (resource capacity 1) of
cumulative where he presented a framework based on justification and explana-
tion. The explanation consists of a subset of initial constraints, valid search decisions,
and conflict windows for every tasks. He proposed explanations for an overload
check concerning a task interval, edge- finding, not-first/not-last, and detectable
precedence filtering algorithms. In this paper we consider the full cumulative
case and in particular show how to explain time-table and edge-finding filtering.
Explaining edge-finding for full cumulative is more complex than the disjunctive
case, since we have to take into account the resource limit and that tasks can run
in parallel. Moreover, Vilím does not consider explaining the filtering algorithms
stepwise.

In the work [15] Jussien presents explanation for the time-table consistency and
filtering algorithms in the context of the PaLM system [16]. The system explains
inconsistency at time t by recording the set of tasks St whose compulsory part
overlaps t and then requiring that at least one of them takes a value different from
their current domain. These explanations are analogous to the naïve explanations we
describe later which examine only the current bounds, but much weaker since they
do not use bounds literals in the explanations. The time-table filtering explanations

Constraints (2011) 16:250–282 255

are based on single time points but again use the current domains of the variables to
explain.

3 Lazy clause generation

Lazy clause generation is a powerful hybrid of SAT and finite domain solving
that inherits advantages of both: high level modelling, and specialised propagation
algorithms from FD; nogood recording, and conflict driven search from SAT.

3.1 Finite domain propagation

We consider a set of integer variables V . A domain D is a complete mapping from V
to finite sets of integers. Let D1 and D2 be domains and V ⊆ V . We say that D1

is stronger than D2, written D1 � D2, if D1(v) ⊆ D2(v) for all v ∈ V . Similarly if
D1 � D2 then D2 is weaker than D1. We use range notation:

[
l .. u

]
denotes the

set of integers {d | l ≤ d ≤ u, d ∈ Z}. We assume an initial domain Dinit such that all
domains D that occur will be stronger i.e. D � Dinit.

A valuation θ is a mapping of variables to values, written {x1 �→ d1, . . . , xn �→ dn}.
We extend the valuation θ to map expressions or constraints involving the variables
in the natural way. Let vars be the function that returns the set of variables appearing
in an expression, constraint or valuation. In an abuse of notation, we define a
valuation θ to be an element of a domain D, written θ ∈ D, if θ(v) ∈ D(v) for all
v ∈ vars(θ).

A constraint c is a set of valuations over vars(c) which give the allowable values
for a set of variables. In finite domain propagation constraints are implemented by
propagators. A propagator f for c is a monotonically decreasing function on domains
such that for all domains D � Dinit: f (D) � D and no solutions are lost, i.e. {θ ∈
D | θ ∈ c} = {θ ∈ f (D) | θ ∈ c}. A propagation solver for a set of propagators F and
current domain D, solv(F, D), repeatedly applies all the propagators in F starting
from domain D until there is no further change in resulting domain. solv(F, D) is the
weakest domain D′ � D which is a fixpoint (i.e. f (D′) = D′) for all f ∈ F.

3.2 SAT solving

Davis-Putnam-Logemann-Loveland [7] SAT solvers can be understood as a form
of propagation solver where variables are Boolean, and the only constraints are
clauses. Each clause is in effect a propagator. The difference with an FD solver
is that propagation of clauses is highly specialised and more importantly the reasons
for propagations are recorded, and on failure used to generate a nogood clause which
explains the failure. This nogood clause is added to the propagators to short circuit
later search. It also helps to direct backtracking to go above the cause of the failure.
See e.g. [6, 10] for more information about SAT solving.

We briefly introduce some SAT terminology. Let B be the set of Boolean
variables. A literal is either b or ¬b where b ∈ B. A clause is a disjunction of literals.
An assignment, A is a subset of literals over B, such that {b ,¬b} �⊆ A.

256 Constraints (2011) 16:250–282

3.3 Lazy clause generation

Lazy clause generation [30] works as follows. Propagators are considered as clause
generators for the SAT solver. Instead of applying propagator f to domain D to
obtain f (D), whenever f (D) �= D we build a clause that encodes the change in
domains. In order to do so we must link the integer variables of the finite domain
problem to a Boolean representation.

We represent an integer variable x with domain Dinit(x) = [
l .. u

]
using the

Boolean variables �x = l�, . . . , �x = u� and �x ≤ l�, . . . , �x ≤ u − 1� where the former
is generated on demand. The variable �x = d� is true if x takes the value d, and false
for a value different from d. Similarly the variable �x ≤ d� is true if x takes a value
less than or equal to d and false for a value greater than d. Note we sometime use the
notation �d ≤ x� for the literal ¬�x ≤ d − 1�.

Not every assignment of Boolean variables is consistent with the integer vari-
able x, for example {�x = 3�, �x ≤ 2�} (i.e. both Boolean variables are true) requires
that x is both 3 and ≤ 2. In order to ensure that assignments represent a consis-
tent set of possibilities for the integer variable x we add to the SAT solver the
clauses DOM(x) that encode �x ≤ d� → �x ≤ d + 1�, l ≤ d < u, �x = l� ↔ �x ≤ l�,
�x = d� ↔ (�x ≤ d� ∧ ¬�x ≤ d − 1�), l < d < u, and �x = u� ↔ ¬�x ≤ u − 1� where
Dinit(x) = [

l .. u
]
. We let DOM = ∪{DOM(v) | v ∈ V}.

Any assignment A on these Boolean variables can be converted to a do-
main: domain(A)(x) = {d ∈ Dinit(x) | ∀�c� ∈ A, vars(�c�) = {x} : x = d |= c}, that is,
the domain includes all values for x that are consistent with all the Boolean variables
related to x. It should be noted that the domain may assign no values to some
variable.

Example 2 Assume Dinit(xi) = [−12 .. 12] for i ∈ [1 .. 3]. The assignment A =
{�x1 ≤ 10�, ¬�x1 ≤ 5�, ¬�x1 = 7�, ¬�x1 = 8�, �x2 ≤ 11�, ¬�x2 ≤ 5�, �x3 ≤ 10�, ¬�x3 ≤
−2�} is consistent with x1 = 6, x1 = 9 and x1 = 10. Hence domain(A)(x1) = {6, 9, 10}.
For the remaining variables domain(A)(x2) = [6 .. 11] and domain(A)(x3) =
[−1 .. 10]. Note that for brevity A is not a fixpoint of a SAT propagator for
DOM(x1) since we are missing many implied literals such as ¬�x1 = 5�, ¬�x1 = 12�,
¬�x1 ≤ −4� etc.

In lazy clause generation a propagator changes from a mapping from domains
to domains to a generator of clauses describing propagation. When f (D) �= D we
assume the propagator f can determine a set of clauses C which explain the domain
changes.

Example 3 Consider the propagator f for x1 ≤ x2 + 1. When applied to do-
main D(x1) = [0 .. 9], D(x2) = [−3 .. 5] it obtains f (D)(x1) = [0 .. 6], f (D)(x2) =
[−1 .. 5]. The clausal explanation of the change in domain of x1 is �x2 ≤ 5� → �x1 ≤
6�, similarly the change in domain of x2 is ¬�x1 ≤ −1� →¬�x2 ≤ −2� (x1 ≥ 0→ x2 ≥
−1). These become the clauses ¬�x2 ≤ 5� ∨ �x1 ≤ 6� and �x1 ≤ −1�∨¬�x2 ≤ −2�.

Assuming clauses C explain the propagation of f are added to the SAT database
on which unit propagation is performed. Then if domain(A) � D then domain(A′) �
f (D) where A′ is the resulting assignment after addition of C and unit propagation.

Constraints (2011) 16:250–282 257

This means that unit propagation on the clauses C is as strong as the propagator f
on the original domains.

Using the lazy clause generation we can show that the SAT solver maintains an
assignment which is at least as strong as that determined by finite domain propaga-
tion [30]. The advantages over a standard FD solver (e.g. [33]) are that we automat-
ically have the nogood recording and backjumping ability of the SAT solver applied
to our FD problem. We can also use activity counts from the SAT solver to direct
the FD search.

Propagation can be explained by different set of clauses. In order to get maximum
benefit from the explanation we desire a “strongest” explanation as possible. A set
of clauses C1 is stronger than a set of clauses C2 if C1 implies C2. In other words, C1

restricts the search space at least as much as C2.

Example 4 Consider the reified inequality constraint b ⇔ x1 ≤ x2 + 1 which holds
if b = 1 and the inequality holds, or b = 0 and x1 > x2 + 1. Assume the initial
domains are Dinit(x1) = [0 .. 9], Dinit(x2) = [0 .. 19] and Dinit(b) = [0 .. 1]. Let us
assume that after propagation of other constraints the domains become D(x1) =
[0 .. 8], D(x2) = [11 .. 19], and D(b) = [0 .. 1]. A propagator f of this constraint
infers the new domain f (D)(b) = {1}. The propagator can explain the change in the
domain by any of the singleton sets of clauses {�x1 ≤ 8� ∧ ¬�x2 ≤ 10� → �b = 1�},
{�x1 ≤ 8� ∧ ¬�x2 ≤ 6� → �b = 1�}, or {¬�x2 ≤ 7� → �b = 1�}. The second and third
explanation are stronger than the first, but neither of the second or third explanation
is stronger than the other.

4 Modelling the cumulative resource constraint

In this section we define the cumulative constraint and discuss two possible
decompositions of it.

The cumulative constraint introduced by Aggoun and Beldiceanu [1] in 1993 is
a constraint with Zinc [26] type

predicate cumulative(list of var int: s, list of var int: d,
list of var int: r, var int: c);

Each of the first three arguments are lists of the same length n and indicate
information about a set of tasks. s[i] is the start time of the ith task, d[i] is the duration
of the ith task, and r[i] is the resource usage (per time unit) of the ith task. The last
argument c is the resource capacity.

The cumulative constraints represent cumulative resources with a constant
capacity over the considered planning horizon applied to non-preemptive tasks, i.e.,if
they are started they cannot be interrupted. W.l.o.g. we assume that all values are
integral and non-negative and there is a planning horizon tmax which is the latest
time any task can finish.

We assume throughout the paper that each of d, r and c are fixed integers,
although this is not important for much of the discussion. This is certainly the most
common case of cumulative, and sufficient for the Rcpsp problems we concen-
trate on.

258 Constraints (2011) 16:250–282

The cumulative constraint enforces that at all times the sum of resources used
by active tasks is no more than the resource capacity.

∀t ∈ [0 .. tmax − 1] :
∑

i∈[1 .. n]:s[i]≤t<s[i]+d[i]
r[i] ≤ c (1)

Example 5 Consider the cumulative resource problem defined in Example 1. This
can be modelled by the cumulative constraint

cumulative([sa, sb, sc, sd, se, sf], [2, 6, 2, 2, 5, 6], [1, 2, 4, 2, 2, 2], 5)

with precedence constraints a � b, b � c, d � e, modelled by sa + 2 ≤ sb sb + 6 ≤
sc, and sd + 6 ≤ se. The propagator for the precedence constraints determines a do-
main D where D(sa) = [0 .. 8], D(sb) = [2 .. 10], D(sc) = [8 .. 18], D(sd) = [0 .. 13],
D(se) = [2 .. 15], D(sf) = [0 .. 14]. The cumulative constraint does not determine
any new information. If we add the constraints sc ≤ 9, se ≤ 4, then precedence
determines the domains D(sa) = [0 .. 1], D(sb) = [2 .. 3], D(sc) = [8 .. 9], D(sd) =
[0 .. 2], D(se) = [2 .. 4]. The cumulative constraint may be able to determine that
task f cannot start before time 10 (See Example 9 for a detailed explanation of how).

5 Propagating the cumulative constraint by decomposition

Usually the cumulative constraint is implemented as a global propagator, since
it can then take more information into account during propagation. But building
a global constraint is a considerable undertaking which we can avoid if we are
willing to encode the constraint using decomposition into primitive constraints. In the
remainder of this section we give two decompositions.

5.1 Time decomposition

The time decomposition (TimeD) [1] arises from the Formula (1). For every time t
the sum of all resource requirements must be less than or equal to the resource ca-
pacity. The Zinc encoding of the decomposition is shown below where: index_set(a)

returns the index set of an array a (here [1 .. n]), lb(x) (ub(x)) returns the declared
lower (resp. upper) bound of an integer variable x, and bool2int(b) is 0 if the Boolean
b is false, and 1 if it is true.

predicate cumulative(list of var int: s, list of var int: d,
list of var int: r, var int: c) =

let {set of int: tasks = index_set(s),
set of int: times = min([lb(s[i]) | i in tasks]) ..

max([ub(s[i]) + ub(d[i]) - 1 |
i in tasks])

} in forall(t in times) (
c >= sum(i in tasks) (

bool2int(s[i] <= t /\ t < s[i] + d[i]) * r[i]));

Constraints (2011) 16:250–282 259

This decomposition implicitly introduces new Boolean variables Bit. Each Bit

represents that task i is active at time t:

∀t ∈ [0 .. tmax − 1] , ∀i ∈ [1 .. n] : Bit ↔ �s[i] ≤ t� ∧ ¬�s[i] ≤ t − d[i]�
∀t ∈ [0 .. tmax − 1] :

∑

i∈[1 .. n]

r[i] · Bit ≤ c

Note that since we are using lazy clause generation, the Boolean variables for
the expressions �s[i] ≤ t� and �s[i] ≤ t − d[i]� already exist and that for a task i we
only need to construct variables Bit where lb(s[i]) ≤ t < ub(s[i]) + d[i] for the initial
domain Dinit.

At most n × tmax new Boolean variables are created, n × tmax conjunction con-
straints, and tmax sum constraints (of size n). This decomposition implicitly profiles
the resource histograms for all times for the resource.

In order to add another cumulative constraint for a different resource on the
same tasks we can reuse the Boolean variables, and we just need to create tmax new
sum constraints.

The variable Bit records whether the task i must use its resources at time t.
Hence Bit is true indicates a “compulsory part” of task i. It holds in the time
interval

[
lb(s[i]) .. lb(s[i]) + d[i] − 1

] ∩ [
ub(s[i]) .. ub(s[i]) + d[i] − 1

]
. The sum of

the compulsory parts for all the tasks and times creates the resource time table.
Figure 2a illustrates the diagrammatic notation we will use to illustrate the earliest
start time, latest end time and compulsory part of a task.

Example 6 Consider the problem of Example 5 after the addition of sc ≤ 9, se ≤ 4.
The domains are D(sa) = [0 .. 1], D(sb) = [2 .. 3], D(sc) = [8 .. 9], D(sd) = [0 .. 2],
D(se) = [2 .. 4], D(sf) = [0 .. 14]. Propagation on the decomposition determines
that Bb5 is true since sb ≤ 5 and ¬(sb ≤ 5 − 6 = −1), similarly for Be5. Using the sum
constraint propagation determines that Bf5 is false, and hence ¬(sf ≤ 5) ∨ sf ≤ −1.

f

f

f

earliest completion time
 lb(s[i]) + d[i]

latest completion time
ub(s[i]) + d[i]

earliest start time
lb(s[i])

latest start time
ub(s[i])

compulsory part

0 2 4 6 8 10 12 14

a

b

c

d

e

f

16 18 20

a
b

e

c

Fig. 2 a A diagram illustrating the calculation of the compulsory part of a task b and an example of
propagation of the cumulative constraint

260 Constraints (2011) 16:250–282

Since the second half of the disjunct is false already we determine that sf ≥ 6.
Similarly propagation on the decomposition determines that Bc9 is true, and hence
Bf9 is false, and hence ¬(sf ≤ 9) ∨ sf ≤ 3. Since the second disjunct must be false
(due to sf ≥ 6) we determine that sf ≥ 10.

The top of Fig. 2b shows each task in a window from earliest start time to latest end
time, and highlights the compulsory parts of each task. If there is no darkened part
(as for d and f) then there is no compulsory part. Propagation of the decomposition
by a finite domain solver will determine Ba1, Bb3, Bb4, Bb5, Bb6, Bb7, Bc9, Be4, Be5,
Be6. which corresponds to the compulsory parts of each task. The resulting resource
time table is shown at the bottom of Fig. 2b, giving the required resource utilisation
at each time. Clearly at times 5 and 9 there is not enough resource capacity for the
resource usage 2 of task f.

We can expand the model to represent holes in the domains of start times.2 The
literal �s[i] = t� is a Boolean representing the start time of the ith task is t. We add the
constraint

�s[i] = t� →
∧

t≤t′<t+d[i]
Bit′

which ensures that if Bit′ becomes false then the values {t′ − d[i] + 1, t′ − d[i] +
2, . . . , t′} are removed from the domain of s[i]. We do not use this constraint for
our experiments since it was inferior in solving time to the model without it.

We tested this extended model on large instances Rcpsp from the PSPLib, but
it neither improved the search time, the number of choice points, nor the average
distance to the best know upper bound in average. This is not surprising since
for Rcpsp there are no propagators that can take advantage of the holes in the
domain generated to infer new information. The expanded model may be useful
for cumulative scheduling problems with side constraints that can benefit from such
reasoning.

5.2 Task decomposition

The task decomposition (TaskD) is a relaxation of the time decomposition. It
ensures a non-overload of resources only at the start (or end) times which is sufficient
to ensure non-overload at every time for the non-preemptive case. Therefore, the
number of variables and linear inequality constraints is independent of the size of
the planning horizon tmax. It was used by El-Kholy [11] for temporal and resource
reasoning in planning. The Zinc code for the decomposition at the start times is
below.

predicate cumulative(list of var int: s, list of var int: d,
list of var int: r, var int: c) =

let { set of int: tasks = index_set(s) }
in forall(j in tasks) (

c >= r[j] + sum(i in tasks where i != j) (
bool2int(s[i] <= s[j] /\ s[j] < s[i] + d[i]) * r[i]));

2Usually CP representation of tasks does not encode holes.

Constraints (2011) 16:250–282 261

The decomposition implicitly introduces new Boolean variables: B1
ij ≡ task j starts

at or after task i starts, B2
ij ≡ task j starts before task i ends, and Bij ≡ task j starts

when task i is running.

∀ j ∈ [1 .. n] ,∀i ∈ [1 .. n] \ { j} : Bij ↔ B1
ij ∧ B2

ij

B1
ij ↔ s[i] ≤ s[j]

B2
ij ↔ s[j] < s[i] + d[i]

∀ j ∈ [1 .. n] :
∑

i∈[1 .. n]\{ j}
r[i] · Bij ≤ c − r[j]

Note not all tasks i must be considered for a task j, only those i which can overlap
at the start times s[j] wrt. precedence constraints, resource constraints and the initial
domain Dinit.

Since the SAT solver does not know about the relationship among the B1∗∗ and B2∗∗
the following redundant constraints can be posted for all i, j ∈ [1 .. n] where i < j in
order to improve the propagation and the learning of reusable nogoods.

B1
ij ∨ B2

ij B1
ji ∨ B2

ji B1
ij ∨ B1

ji B1
ij → B2

ji B1
ji → B2

ij

In addition for each precedence constraint i � j we can post ¬Bij.
The size of this decomposition only depends on n whereas TimeD depends on

n and the number of time points in the planning horizon tmax. At most 3n(n − 1)

Boolean variables, 3n(n − 1) equivalence relations, 5(n − 1)(n − 2)/2 redundant
constraints and n sum constraints are generated. Again adding another cumulative
resource constraints can reuse the Boolean variables and requires only adding n new
sum constraints.

Example 7 Consider the problem of Example 5 after the addition of sc ≤ 9, se ≤
4. The domains from precedence constraints are D(sa) = [0 .. 1], D(sb) = [2 .. 3],
D(sc) = [8 .. 9], D(sd) = [0 .. 2], D(se) = [2 .. 4], D(sf) = [0 .. 14]. Propagation on
the decomposition learns ¬B2

ab, ¬B2
bc and ¬B2

de direct from precedence constraints
and hence ¬Bab, ¬Bbc, and ¬Bde. From the start times propagation determines that
B1
ab, B1

db, B1
ae, B1

de, B1
ac, B1

bc, B1
dc, B1

ec, and similar facts about B2 variables, but
no information about B variables. The sum constraints determine that ¬Bcf and
¬Bfc but there are no bounds changes. This illustrates the weaker propagation of
the TaskD decomposition compared to the TimeD decomposition.

If we use end time variables e[i] = s[i] + d[i], we can generate a symmetric model
to that defined above.

In comparison to the TimeD decomposition, the TaskD decomposition is stronger
in its ability to relate to task precedence information (i � j), but generates a weaker
profile of resource usage, since no implicit profile is recorded. They are thus incom-
parable in strength of propagation, although in practice the TimeD decomposition it
almost always stronger.

262 Constraints (2011) 16:250–282

6 Explanations for the global cumulative

The global cumulative consists of consistency-checking and filtering algorithms.
In order to gain maximum benefit from the underlying SAT solver (in term of
nogood learning) these algorithms must explain inconsistency and domain changes of
variables using Boolean literals that encode the integer variables and domains in the
SAT solver.3 The decomposition approaches to cumulative inherit the ability to
explain “for free” from the explanation capabilities of the base constraints that make
them up. The challenge in building an explaining global constraint is to minimise the
overhead of the explanation generation and make the explanations as reusable as
possible.

6.1 Consistency check

The cumulative constraint first has to perform a consistency check to determine
whether the constraint is possibly satisfiable. Here we consider a consistency check
based on the resource time table. If an overload in resource usage occurs on a
resource with a maximal capacity c in the time interval [s .. e − 1] involving the set
of tasks �, the following condition holds:

∀i ∈ � : ub(s[i]) ≤ s ∧ e ≤ lb(s[i]) + d[i]
∑

i∈�

r[i] > c

A naïve explanation explains the inconsistency using the current domain bounds on
the corresponding variables from the tasks in �.

∧

i∈�

�lb(s[i]) ≤ s[i]� ∧ �s[i] ≤ ub(s[i])� → false

The naïve explanation simply uses the current domains of all variables involved in
the inconsistency, which is always a correct explanation for any constraint.

In some cases some task in � might have compulsory parts before or after the
overload. These parts are not related to the overload, and give us the possibility to
widen the bounds in the explanation. We can widen the bounds of all tasks in this way
so that their compulsory part is only between s and e. The corresponding explanation
is called a big-step explanation.

∀i ∈ � : �e − d[i] ≤ s[i]� ∧ �s[i] ≤ s� → false

The big-step explanation explains the reason for the overload over its entire width.
We can instead explain the overload by concentrating on a single time point t in

[s .. e − 1] rather than examining the whole time interval. This allows us to further
strengthen the explanation which has the advantage that the resulting nogood is more
reusable. The explanation has the same pattern as a big-step explanation except we

3When using lazy clause generation it is not strictly necessary that a propagator explains all its
propagations, in which case the resulting propagated constraints are treated like decisions, and
learning is not nearly as useful.

Constraints (2011) 16:250–282 263

use t for s and t + 1 for e. We call these explanations pointwise explanations. The
pointwise and big-step explanation coincide iff s + 1 = e.

The pointwise explanation is implicitly related to the TimeD where an overload is
explained for one time point. That time point by TimeD depends on the propagation
order of the constraints related to an overload whereas for the global cumulative
we have the possibility of choosing a time point to use to explain inconsistency. This
means that we have more control and flexibility about what explanation is generated
which may be beneficial. In the experiments reported herein we always choose the
mid-point of [s .. e − 1].

There are many open questions related to time points for pointwise explanations
in general and with respect to the possible search space reduction from derived
nogoods or explanations: does it matter which time point is picked, if so, which is the
best one?

Sometimes a resource overload is detected where the task set � of tasks which
are compulsory at that time is not minimal with respect to the resource limit, i.e.,
there exists a proper subset of tasks �′ ⊂ � with

∑
i∈�′ r[i] > c. The same situation

happens for the TimeD decomposition as well. Here, again with the global view
on cumulative, we know the context of the tasks involved and can decide which
subset �′ is used in order to explain the inconsistency if there exists a choice. Here as
well, it is an open question which subset is the best to restrict the search space most or
whether it does not matter? For our experiments the lexicographic least set of tasks
is chosen (where the order is given by the order of appearance in the cumulative
constraint).4

Example 8 Consider the problem of Example 1 with the additional constraints
sc ≤ 9, se ≤ 4, and sf ≤ 4. The resulting bounds from precedence constraints are
D(sa) = [0 .. 1], D(sb) = [2 .. 3], D(sc) = [8 .. 9], D(sd) = [0 .. 2], D(se) = [2 .. 4],
D(sf) = [0 .. 4]. The time interval of positions where the tasks can fit and the
resulting resource profile are shown in Fig. 3. There is an overload of the resource
limit between time 4 and 6 with � = {b,e,f}. The naive explanation is �2 ≤
sb� ∧ �sb ≤ 3� ∧ �2 ≤ se� ∧ �se ≤ 4� ∧ �0 ≤ sf� ∧ �sf ≤ 4� → false. The big-step ex-
planation is �0 ≤ sb� ∧ �sb ≤ 4� ∧ �1 ≤ se� ∧ �se ≤ 4� ∧ �0 ≤ sf� ∧ �sf ≤ 4� → false.
A minimal explanation picking time 5 is �−1 ≤ sb� ∧ �sb ≤ 5� ∧ �1 ≤ se� ∧ �se ≤
5� ∧ �−1 ≤ sf� ∧ �sf ≤ 5� → false. Note that each explanation is stronger than the
previous one, and hence more reusable. Note also that some of the lower bounds (0
and −1) are universally true and can be omitted from the explanations.

6.2 Time-table filtering

Time-table filtering is based on the resource profile of the compulsory parts of
all tasks. In a filtering without explanation the height of the compulsory parts
concerning one time point or a time interval is given. For a task the profile is scanned
through to detect time intervals where it cannot be executed. The lower (upper)
bound of the task’s start time is updated to the first (last) possible time point with

4In our experiments, successors of a task appear later in the order than the task.

264 Constraints (2011) 16:250–282

Fig. 3 An example of an
inconsistent partial schedule
for the cumulative
constraint

0 2 4 6 8 10 12 14

a

b

c

d

e

f

16 18 20

a
b

e

c

f

f

respect to those time intervals. If we want to explain the new lower (upper) bound
we need to know additionally which tasks have the compulsory parts of those time
intervals.

A prof ile is a triple (A, B, C) where A = [s .. e − 1] is a time interval, B the set
of all tasks i with ub(s[i]) ≤ s and lb(s[i]) + d[i] ≥ e (that is a compulsory part in the
time interval [s .. e − 1]), and C the sum of the resource requirements r[i] of all tasks
i in B. Here, we only consider profiles with a maximal time interval A with respect to
B and C, i.e., there exists no other profile (

[
s′ .. e′ − 1

]
, B, C) where s′ = e or e′ = s.

Let us consider the case when the lower bound of the start time variable for
task j can be maximally increased from its current value lb(s[j]) to a new value
LB[j] using time-table filtering (the case of decreasing upper bounds in analogous
and omitted). Then there exist a sequence of profiles [D1, . . . , Dp] where Di =
([si .. ei − 1] , Bi, Ci) where e0 = lb(s[j]) and ep = LB[j] such that

∀1 ≤ i ≤ p : Ci + r[j] > c ∧ si ≤ ei−1 + d[j]

Hence each profile Di pushes the start time of task j to ei.
A naïve explanation of the whole propagation would reflect the current domain

bounds from the involved tasks.

⎛

⎝�lb(s[j]) ≤ s[j]� ∧
∧

1≤i≤p,l∈Bi

�lb(s[l]) ≤ s[l]� ∧ �s[l] ≤ ub(s[l])�
⎞

⎠ → �LB[j] ≤ s[j]�

As for the consistency check it is possible to use smaller (bigger) values in the
inequalities to get a big-step explanation.
⎛

⎝�s1 + 1 − d[j] ≤ s[j]� ∧
∧

1≤i≤p,l∈Bi

�ei − d[l] ≤ s[l]� ∧ �s[l] ≤ si�

⎞

⎠ → �LB[j] ≤ s[j]�

Constraints (2011) 16:250–282 265

Both the above explanations are likely to be very large (they involve all start times
appearing in the sequence of profiles) and hence are not likely to be very reusable.

One solution is to generate separate explanations for each profile Di starting from
the earliest time interval. An explanation for the profile Di = ([si .. ei − 1] , Bi, Ci)

which forces the lower bound of task j to move from ei−1 to ei is

⎛

⎝�si + 1 − d[j] ≤ s[j]� ∧
∧

l∈Bi

�ei − d[l] ≤ s[l]� ∧ �s[l] ≤ si�

⎞

⎠ → �ei ≤ s[j]�

This corresponds to a big-step explanation of inconsistency over the time interval
[si .. ei − 1].

Again we can use pointwise explanations based on single time points rather than
a big-step explanation for the whole time interval. Different from the consistency
case we may need to pick a set of time points no more than d[j] apart to explain the
increasing of the lower bound of s[j] over the time interval. For a profile with length
greater than the duration of task j we may need to pick more than one time point in a
profile. Let [t1, . . . , tm] be a set of time points such that t0 = lb(s[j]), tm + 1 = LB[j],
∀1 ≤ j ≤ m : t j−1 + d[j] ≥ t j and there exists a mapping P(tl) of time points to profiles
such that ∀1 ≤ l ≤ m : sP(tl) ≤ tl < eP(tl) Then we build a pointwise explanation for
each time point tl , 1 ≤ l ≤ m

⎛

⎝�tl + 1 − d[j] ≤ s[j]� ∧
∧

k∈Bi

�tl + 1 − d[l] ≤ s[k]� ∧ �s[k] ≤ tl�

⎞

⎠ → �tl + 1 ≤ s[j]�

This corresponds to a set of pointwise explanations of inconsistency. We use these
pointwise explanations in our experiments, by starting from t0 = lb(s[j]) and for
j ∈ [1 .. m] we choose t j as the greatest time maintaining the conditions above.
The exception is that if we never entirely skip a profile Di even if this is possible,
but instead choose ei − 1 as the next time point and continue the process. Our
experiments show this is slightly preferable to the skipping a profile entirely.

Example 9 Consider the example shown in Fig. 2b. which adds sc ≤ 9, se ≤ 4 to
the original problem. The profile filtering propagator can determine that task f
can start earliest at time 10, since it cannot fit earlier. Clearly because there is
one resource unit missing (one available but two required) in the period [4 .. 7]
it must either end before or start after this period. Since it cannot end before
it must start after this point. Similarly for the period [9 .. 10] is must either end
before or start after, and since it cannot end before it must start after. So for this
example lb(sf) = 0 and LB[f] = 10 and there are two profiles used [D1, D2] =
[([4 .. 7] , {b,e}, 4), ([9 .. 10] , {c}, 4)].

The naïve explanation is just to take the bounds of the tasks (b, e, c) involved
in the profile that is used: e.g. �2 ≤ sb� ∧ �sb ≤ 3� ∧ �2 ≤ se� ∧ �se ≤ 4� ∧ �8 ≤ sc� ∧
�sf ≤ 9� → �10 ≤ sf�. (Note we omit redundant literals such as �0 ≤ sf�).

266 Constraints (2011) 16:250–282

The iterative profile explanation explains each profile separately as �1 ≤
sb� ∧ �sb ≤ 4� ∧ �2 ≤ se� ∧�se≤ 4� → �7 ≤ sf� and �4 ≤ sf� ∧ �8 ≤ sc� ∧ �sc ≤ 9� →
�10 ≤ sf�.

The iterative pointwise explanation picks a set of time points, say 5 and 9, whose
corresponding profiles are D1 and D2, and explains each time point minimally giv-
ing: �sb ≤ 5� ∧ �1 ≤ se� ∧ �se ≤ 5� → �6 ≤ sf� and �4 ≤ sf� ∧ �8 ≤ sc� ∧ �sc ≤ 9� →
�10 ≤ sf�. Note that this explanation is analogous to the explanation devised by the
decomposition in Example 6, and stronger than the iterative profile explanation.

The global cumulative using time-table filtering and the TimeD decomposition
have the same propagation strength. The advantages of the global approach is that we
can control the times points we propagate on, while the decomposition in the worst
case may propagate on every time point in every profile. The possible advantage
of the decomposition is that it learns smaller nogoods related to the decomposed
variables, but since Bit simply represents a fixed conjunction of bounds in practice
the nogoods learned by the TimeD decomposition have no advantage.

6.3 (Extended) edge-finding filtering

The (extended) edge-finding filtering [29] is based on task intervals and reasoning
about the task’s energy, energyi = d[i] × r[i], the area spanned by task’s duration
d[i] and resource requirement r[i]. Edge finding finds a set of tasks � that all must
occur in the time interval [s� .. e�] such that the total resources used by � is close
to the amount available in that time interval (c × (e� − s�)). If placing task j at its
earliest start time will require more than the remaining amount of resources from
this range, then task j cannot be strictly before any task in �. We can then update its
lower bound accordingly.

Since the edge-finding and extended edge-finding are highly related we combine
them in one rule and refer to them just as edge-finding for simplicity. Given a set
of tasks � and task j �∈ � where energy�, e� and s� generalise the notation of the
energy, the end time and start time from tasks to task sets, and o j

� is the maximum
resource usage for task j before s�:

energy∅ = 0 energy� =
∑

i∈�

energyi e∅ = +∞ e� = max
i∈�

(ub(s[i]) + d[i])

s∅ = −∞ s� = min
i∈�

(lb(s[i])) o j
� = r[j] × max(s� − lb(s[j]), 0)

then

j ∈ T, � ⊆ T \ { j} : energy� + energy j > c × (e� − s�) + o j
� ⇒ j �� i.∀i ∈ �

If the rule holds the lower bound of the start time of the task j can be increased to

LB[j] := max
�′⊆�:rest(�′,r[j])>0

s�′ +
⌈

rest(�′, r[j])
r[j]

⌉

where rest(�′, r[j]) = energy�′ − (c − r[j]) × (e�′ − s�′). Figure 4 illustrates the (ex-
tended) edge-finding rule.

Constraints (2011) 16:250–282 267

2 4 6 8 10 0 2 4 6 8 100

s e

c (e s)

r [j] energyj

energy

s e

r [j]

cc
max(s lb (s [j]),0)

Fig. 4 The left hand side of the figure illustrates the available energy within the interval [s� .. e�]
plus the additional energy o j

� when task j starts earlier than s�, while the right hand side illustrates
the required energy if j starts earlier than all tasks in �. For the illustrated situation we have j = f,
lb(s[j]) = 0 and � = {b,c,e}. Since there is unused energy (the shaded area) no propagation occurs

A naïve explanation would be
(

�lb(s[j]) ≤ s[j]� ∧
∧

i∈�

(�lb(s[i]) ≤ s[i]� ∧ �s[i] ≤ ub(s[i])�)
)

→ �LB[j] ≤ s[j]�

In order to gain a stronger explanation we can maximise the bounds on the tasks in
�. For that we have to consider that the condition for the edge-finding solely depends
on �, and j and the new lower bound for j on a subset �′ of �. We obtain a big-step
explanation.

⎛

⎝�s�∪{ j} ≤ s[j]� ∧
∧

i∈�\�′
(�s� ≤ s[i]� ∧ �s[i] + d[i] ≤ e��) ∧

∧

i∈�′
(�s�′ ≤ s[i]� ∧ �s[i] + d[i] ≤ e�′�)

)

→ �LB[j] ≤ s[j]�

If we look at the unused energy of the time interval [s� .. e�] and the energy
needed for the task j in that time interval if j is scheduled at its earliest start time
lb(s[j]) then the difference of the latter energy minus the former can be larger
than 1. This would mean that the remaining energy can be used to strengthen the
explanation in some way.

The remaining energy � concerning a task j and the � satisfying the edge-finding
condition is

� = e� + r[j] × (lb(s[j]) + d[j] − max(s�, s[j])) − c × (e� − s�)

There exists different (non-exclusive) options to use this energy to strengthen the
explanation where �′ ⊆ � maximises LB[j].
1. By increasing the value of the end time e� if �/c > 1, but not for �′.
2. By decreasing the value of the start time s� if �/c > 1, but not for �′.
3. By decreasing the value of the start time s j if �/r[j] > 1.
4. By removing a task i from � \ �′ if � > energyi

Finally, if there exists several �′ ⊆ � with which the lower bound of task j could
be improved then the explanation can be split into several explanation as in the

268 Constraints (2011) 16:250–282

time-table filtering case. The filtering algorithm presented by Vilím [38]5 and
Mercier [27] directly computes LB[j] and its stepwise computation is hidden in the
core of those algorithms. Hence, they have to be adjusted in a way that can increase
the runtime complexity from O(kn log(n)) to O(kn2 log(n)) and O(kn2) to O(kn3)

where n is the number of tasks and k the number of distinct resource usages.
For a pointwise explanation, rather than consider all �′ ⊆ � we restrict ourselves

to explain the bounds update generated by �. The big-step explanation is generated
as before (but � = �′). With the new bound the edge-finding rule (6.3) will now hold
for �′ and we can explain that. Clearly, the pointwise explanation is stronger than the
big-step explanation, because we broaden the bounds requirements on the tasks in
�′ in the big-step explanation, and the later explanation only considers tasks in �′.

Example 10 Consider the example of Example 1 where we split the task e into two
parts e1 of duration 2 and e2 of duration 3, but place no precedence constraints on
these new tasks. Suppose the domains of the variables are D(sa) = {0}, D(sb) = {2},
D(sc) = {8}, D(sd) = [0 .. 2], D(se1) = [2 .. 6], D(se2) = [2 .. 5], D(sf) = [2 .. 14], so
tasks a, b and c are fixed. The situation is illustrated in Fig. 5. The time-table filtering
propagator cannot determine any propagation since f seems to fit at time 2, or after
time 10. But in reality there is not enough resources for f in the time interval [2 .. 10]
since this must include the tasks b, c, e1, and e2. The total amount of resource
available here is 5 × 8 = 40, but 12 are taken by b and 8 are taken by c, e1 requires
4 resource units somewhere in this interval, and e2 required 6 resource units. Hence
there are only 10 resource units remaining in the interval [2 .. 10]. Starting f at time 2
requires at least 12 resource units be used within this interval hence this is impossible.

The edge-finding condition holds for � = {b,c,e1,e2} and f. Now rest({c}, 2) =
10 − (5 − 2) × (10 − 8) = 4 for �′ = {c}. The lower bound calculated is LB[f] =
8 + �4/2� = 10. The naïve explanation is �2 ≤ sf� ∧ �2 ≤ sb� ∧ �sb ≤ 2� ∧ �2 ≤ se1� ∧
�se1 ≤ 6� ∧ �2 ≤ se2� ∧ �se2 ≤ 5� ∧ �8 ≤ sc� ∧ �sc ≤ 8� → �10 ≤ sf�.

The big-step explanation ensures that each task in � \ �′ uses at least
the amount of resources in the interval [2 .. 10] as the reasoning above. It is
�2 ≤ sf� ∧ �2 ≤ sb� ∧ �sb ≤ 4� ∧ �2 ≤ se1� ∧ �se1 ≤ 8� ∧ �2 ≤ se2� ∧ �se2 ≤ 7� ∧ �8 ≤
sc� ∧ �sc ≤ 8� → �10 ≤ sf�.

Now let us consider the pointwise explanation. If we restrict ourselves to use
� for calculating the new lower bound we determine LB[j] = 2 + �(30 − (5 −
2) × (10 − 2))/2� = 5 and the big-step explanation is �2 ≤ sf� ∧ �2 ≤ sb� ∧ �sb ≤ 4� ∧
�2 ≤ se1� ∧ �se1 ≤ 8� ∧ �2 ≤ se2� ∧ �se2 ≤ 7� ∧ �2 ≤ sc� ∧ �sc ≤ 8� → �5 ≤ sf�, which
results in the situation shown in Fig. 5b. We then detect that edge-finding condition
now holds for �′ = {c} which creates a new lower bound 10, and explanation �5 ≤
sf� ∧ �8 ≤ sc� ∧ �sc ≤ 8� → �10 ≤ sf�. The original big-step explanation is broken
into two parts, each logically stronger than the original.

For the original big-step explanation � = 30 + 2 × (2 + 6 − 2) − 5 × (10 − 2) = 2.
We cannot use this to improve the explanation since it is not large enough. But for the
second explanation in the pointwise approach � = 10 + 2 × (5 + 6 − 8) − 5 × (10 −
8) = 6. We could weaken the second explanation (corresponding to point 3 in the

5Vilím only presents the edge-finding algorithm, but the algorithm can be extended for extended
edge-finding.

Constraints (2011) 16:250–282 269

0 2 4 6 8 10 12 14

d

e1

f

16 18 20

a
b

c

b

c

a

e2

e1 e2

0 2 4 6 8 10 12 14

d

e1

f

16 18 20

a
b

c

b

c

a

e2

e1 e2

Fig. 5 a A example of propagation of the cumulative constraint using edge-finding. b The result
of propagating after the first step of stepwise edge-finding

enumeration on the page 17) to �3 ≤ sf� ∧ �8 ≤ sc� ∧ �sc ≤ 8� → �10 ≤ sf� because
�/r[f] = 6/2 = 3 > 1.

We have not yet implemented edge-finding with explanation, since the problems
we examine are not highly cumulative and for such problems edge-finding filtering
cannot compete with time-table filtering. It remains interesting future work to exper-
imentally compare different approaches to edge-finding filtering with explanation.

7 Resource-constrained project scheduling problems

Resource-constrained project scheduling problems (Rcpsp) appear as variants, ex-
tensions and restrictions in many real-world scheduling problems. Therefore we test
the time, task decomposition and the explaining cumulative propagator on the
well-known Rcpsp benchmark library PSPLib [22].

An Rcpsp is denoted by a triple (T, A, R) where T is a set of tasks, A a set of
precedences between tasks and R is a set of resources. Each task i has a duration d[i]
and a resource usage r[k, i] for each resource k ∈ R. Each resource k has a resource
capacity c[k].

The goal is to find either a schedule or an optimal schedule with respect to an
objective function where a schedule s is an assignment which meets the following
conditions

∀i � j ∈ A : s[i] + d[i] ≤ s[j]
∀t ∈ [0 .. tmax − 1] ,∀k ∈ R :

∑

i∈T:s[i]≤t<s[i]+d[i]
r[k, i] ≤ c[k] ,

where tmax is the planning horizon. For our experiments we search for a schedule
which minimises the makespan tms such that s[i] + d[i] ≤ tms holds for i = 1, . . . , n.

270 Constraints (2011) 16:250–282

The following code gives a basic Zinc model for the Rcpsp problem.

_________________ RCPSP_basic_model.zinc ___________________
% Parameters

int: t_max; % planning horizon
enum Tasks; % set of tasks
enum Resources; % set of resources
int: n = card(Tasks); % number of tasks
array[Tasks] of int: d; % durations of tasks
array[Tasks] of set of Tasks: suc; % successors of each task
array[Resources, Tasks] of int: r; % resource usage
array[Resources] of int: c; % resource limit

% Variables
array[Tasks] of var 0..t_max: s; % start times of tasks
var 0..t_max: makespan;

% Precedence constraints
constraint

forall (i in Tasks, j in suc[i])
(s[i] + d[i] <= s[j]);
% Resource constraints

constraint
forall (k in Resources)
(cumulative(array1d(1..n,s), array1d(1..n,d), [r[k,i] |
i in Tasks], c[k]));

% Makespan constraints
constraint

forall (i in Tasks where suc[i] == {})
(s[i] + d[i] <= makespan);
% (Redundant) Non-overlap constraints

constraint
forall (i, j in Tasks, k in Resources

where i < j /\ r[k,i] + r[k,j] > c[k])
(s[i] + d[i] <= s[j] \/ s[j] + d[j] <= s[i]);
% Objective function

solve minimize makespan;
__

A Zinc data file representing the problem of Example 1 is

____________________ RCPSP_run_ex.dzn ______________________
t_max = 20;
enum Tasks = { ta, tb, tc, td, te, tf };
enum Resources = { single };
d = array1d(Tasks, [2,6,4,2,5,6]);
suc = array1d(Tasks, [{tb},{tc},{},{te},{},{}]);
r = array2d(Resources,Tasks,[1,2,4,2,2,2]);
c = array1d(Resources,[5]);
__

Constraints (2011) 16:250–282 271

In practice we share the Boolean variables generated inside the cumulative
constraints as described in Section 5.1 (by common sub-expression elimination) and
add redundant constraints as described in Section 5.2 when using the TaskD decom-
position. We also add redundant non-overlap constraints for each pair of tasks whose
resource usages make them unable to overlap. Moreover, the planning horizon tmax

was determined as the makespan of the first solution found by selection of the start
time variable with the smallest lower bound (if a tie occurs then the lexicographic
least variable) and assignment of the variable to its lower bound. The initial domain
of each variable s[i] was determined as Dinit(s[i]) = [

p[i] .. tmax − q[i]]
where p[i] is

the duration of the longest chain of predecessor tasks, and q[i] is the duration of the
longest chain of successor tasks.

In the remainder of this section we discuss alternative search strategies.

7.1 Search using serial scheduling generation

The serial scheduling generation scheme (serial Sgs) is one of basic deterministic
algorithms to assign stepwise a start time to an unscheduled task. It incrementally
extends a partial schedule by choosing an eligible task—i.e. all of whose predecessors
are fixed in the partial schedule—and assigns it to its earliest start time with
respect to the precedence and resource constraints. For more details about SGS,
different methods based on it, and computational results in Operations Research see
[14, 20, 21].

Baptiste and Le Pape [2] adapt serial Sgs for a constraint programming frame-
work. For our experiments we use a form where we do not apply their dominance
rules, and where we impose a lower bound on the start time instead of posting the
delaying constraint “task i executes after at least one task in S”.

1. Select an eligible unscheduled task i with the earliest start time t = lb(s[i]). If
there is a tie between some tasks then select that one with the minimal latest
start time ub(s[i]). If still tied then choose the lexicographic least task. Create a
choice point.

2. Left branch: Extend the partial schedule by setting s[i] = t. If this branch fails
then go to the right branch; Otherwise go to step 1.

3. Right branch: Delay task i by setting s[i] ≥ t′ where t′ = min{lb(s[j]) + d[j] |
j ∈ T : lb(s[j]) + d[j] > lb(s[i])}, that is, the earliest end time of the concurrent
tasks. If this branch fails then backtrack to the previous choice point; Otherwise
go to step 1.

The right branch uses the dominance rule that amongst all optimal schedules there
exists one where every task starts either at the first possible time or immediately after
the end of another task. Therefore, the imposing of the new lower bound is sound,
no solution is lost for the considered problem. If we add side constraints then this
assumption could be invalid.

Note that we use this search strategy with branch and bound, where whenever a
new solution is found (with makespan = t), a constraint requiring a better solution
(makespan < t) is dynamically (globally) added during the search.

272 Constraints (2011) 16:250–282

7.2 Search using variable state independent decaying sum

The SAT decision heuristic Variable State Independent Decaying Sum (Vsids) [28]
is a generic search approach that is currently almost universally used in DPLL SAT
solvers. Each variable is associated with a dynamic activity counter that is increased
when the variable is involved in a failure. Periodically, all counters are reduced, thus
decaying. The unfixed variable with the highest activity is selected to branch on at
each stage. Benchmark results by Moskewicz [28] shows that Vsids performs better
on average on hard problems than other heuristics.

To use Vsids in a lazy clause generation solver, we ask the SAT solver what its
preferred literal for branching on is. This corresponds to an atomic constraint x ≤ d
or x = d and we branch on x ≤ d ∨ x > d or x = d ∨ x �= d. Note that the search is
still controlled by the FD search engine, so that we use its standard approach to
implementing branch-and-bound to implement the optimisation search.

Normally SAT solvers use dichotomic restart search for optimisation as the SAT
solver itself does not have optimisation search built in. That is assuming minspan is
the current lower bound on makespan, and a new solution is found with makespan =
t we let t′ = �(t + minspan)/2� and solve the satisfaction problem to find a makespan
in the range

[
minspan .. t′

]
. If we find a solution at t′′ we continue the process,

otherwise we reset minspan to t′ + 1 and solve the satisfaction problem to find a
makespan in the range

[
minspan .. t − 1

]
. Note that when a satisfaction search fails

the nogoods generated in that search are not valid for subsequent searches (since
they make use of the assumption makespan ≤ t′.

The combination of Vsids and branch and bound is much stronger since in the
continuation of the search with a better bound, the activity counts at the time of
finding a new better solution are used in the same part of the search tree, and all
nogoods generated remain valid.

Restarting is shown to be beneficial in SAT solving (and CSP solving) in speeding
up solution finding, and being more robust on hard problems. On restart the set of
nogoods has changed as well as the activity of variables, so the search will take a very
different path. We also use Vsids search with restarting, which we denote Restart.6

7.3 Hybrid search strategies

One drawback of Vsids is that at the beginning of the search the activity counters are
only related to the clauses occurring in the original model, and not to any conflict.
This is exacerbated in lazy clause generation where many of the constraints of the
problem may not appear at all in the clause database initially. This can lead to poor
decisions in the early stages of the search. Our experiments support this, there are
a number of “easy” instances which Sgs can solve within a small number of choice
points, where Vsids requires substantially more.

In order to avoid these poor decisions we consider a hybrid search strategy. We
use Sgs for the first 500 choice points and then restart the search with Vsids. The
Sgs search may solve the whole problem if it is easy enough, but otherwise it sets

6Note that restarting with Sgs is not very attractive since we rarely learn anything that changes the
Sgs search decisions, we effectively just continue the same search.

Constraints (2011) 16:250–282 273

the activity counters to meaningful values so that Vsids starts concentrating on
meaningful decisions. We denote this search as Hot Start, and the version where the
secondary Vsids search also restarts as Hot Restart.

8 Experiments

We carried out extensive experiments on Rcpsp instances comparing our approaches
to decomposition without explanation, global cumulative propagators from
sicstus and eclipse, as well as a state-of-the-art exact solving algorithm [23]. Detailed
results are available at http://www.cs.mu.oz.au/∼pjs/rcpsp.

We use two suites of benchmarks. The library PSPLib [22, 32] contains the four
classes J30, J60, J90, and J120 consisting of 480 instances of 30, 60, 90, and 120 tasks
respectively. We also use a suite (BL) of 40 highly cumulative instances with either
20 or 25 tasks constructed by Baptiste and Le Pape [2].

The experiments were run on a X86-64 architecture running GNU/Linux and a
Intel(R) Xeon(R) CPU E54052 processor with 2 GHz. The code was written in
Mercury using the G12 Constraint Programming Platform and compiled with the
Mercury Compiler and grade hlc.gc.trseg. Each run was given a 10 min limit.

We compare 4 different implementations of cumulative with explanation:
(t) the TimeD decomposition of Section 5.1, (s) the TaskD decomposition of
Section 5.2, (e) a task decomposition using end times (e), and (g) a global
cumulative using time-table filtering with explanation. The global cumulative
uses pointwise explanations for consistency and iterative pointwise explanations
for filtering. We experimented with other forms of explanations for the global
cumulative but they were inferior for hard instances, although surprisingly not
that bad (about 15% worse in average except for naïve explanations which behave
terribly). The present implementation of the global cumulative recalculates the
resource profile on each invocation which could be significantly improved by making
it incremental. Profiling on a few instances showed that more than the half of the
time was spent in propagation of cumulative.

8.1 Results on J30 and BL instances

The first experiment compares different decompositions and search on the smallest
instances J30 and BL. We compare Sgs, Vsids, Restart and the hybrid search
approaches using our 4 different propagation with explanation approaches. The
results are shown in Tables 1 and 2. For J30 we show the number of problems solved
(#svd), (cmpr(477)) the average solving time in seconds and number of failures on
the 477 problems that all approaches solved, and (all(480)) average solving time in
seconds and number of failures on all 480 problems within the execution.7 Note that
we shall use similar comparisons and notation in future tables. The best results in
each column are shown in italics. For the BL problems the results are shown in
Table 2. We show the number of solved problems, (all(40)) average solving time

7This means that for problems that time out the number of failures is substantially larger than those
which were solved before timeout.

http://www.cs.mu.oz.au/~pjs/rcpsp

274 Constraints (2011) 16:250–282

Table 1 Results on J30
instances

Search Model #svd cmpr(477) all(480)

Time Fails Time Fails

Sgs s 477 2.13 3,069 5.86 5,375
e 477 2.19 3,054 5.93 5,331
t 480 0.87 2,339 2.83 4,230
g 480 0.73 1,977 3.04 3,919

Vsids s 480 1.20 2,128 1.63 2,984
e 480 0.46 1,504 0.77 2,220
t 480 0.26 1,002 0.33 1,271
g 480 0.15 797 0.20 1,058

Restart s 480 0.50 1,483 0.93 2,317
e 480 0.43 1,368 0.80 2,128
t 480 0.24 856 0.33 1,174
g 480 0.15 777 0.22 1,093

Hot Start t 480 0.21 779 0.34 1,220
g 480 0.12 706 0.17 956

Hot Restart t 480 0.26 884 0.35 1,231
g 480 0.13 727 0.21 1,058

and number of failures with a 10 min limit (on all 40 instances), as well as fails(4000)
with a 4000 failure limit.

Of the decompositions the TimeD decomposition is clearly the best being almost
twice as fast as the TaskD decompositions. This is presumably the effect of the
stronger propagation. Note that these are the smallest problems where its relative
disadvantage in size is least visible. The global is usually significantly better than
the TimeD decomposition: it usually requires less search and can be up to twice as
fast. Interestingly sometimes the TimeD decomposition is faster which may reflect
the fact that it is (automatically) a completely incremental implementation of the
cumulative constraint. For these small problems the best search strategy is Hot
Start since the overhead of restarting Vsids does not pay off for these simple
problems.

Table 2 Results on BL
instances

Search Model #svd all(40) #svd fails(4000)

Sgs s 40 2.51 9,628 24 0.18 1,261
e 40 2.63 9,443 24 0.15 1,144
t 40 0.82 5,892 29 0.04 781
g 40 0.88 5,723 30 0.05 860

Vsids s 40 0.79 4,436 31 0.16 1,115
e 40 0.77 4,104 30 0.15 1,025
t 40 0.22 2,540 34 0.04 661
g 40 0.20 2,039 37 0.04 605

Restart s 40 0.88 4,549 31 0.17 1,169
e 40 1.46 5,797 32 0.17 1,135
t 40 0.13 1,626 35 0.05 603
g 40 0.14 1,568 36 0.04 546

Hot Start t 40 0.10 1,448 36 0.04 680
g 40 0.12 1,485 36 0.04 593

Hot Restart t 40 0.15 1,829 35 0.05 719
g 40 0.25 2,460 36 0.05 680

Constraints (2011) 16:250–282 275

Table 3 Results of the FD
solvers on the J30 instances

Solver #svd cmpr(364) all(480)

sicstus Default 418 0.22 337 87.43 141,791
Global 415 0.40 331 94.01 76,533

eclipse cumu 368 13.98 26,469 154.79 365,364
ef 366 18.33 21,717 157.43 173,445
ef3 368 16.61 17,530 155.87 155,142

G12 FD + t 404 1.79 5,701 104.38 641,185
Sgs + t 480 0.01 75 2.83 4,230
Sgs + g 480 0.01 70 3.04 3,919

The results on the BL instances show that approaches using TimeD or the global
propagator and Vsids could solve between six and nine instances more than the
base approach (FE) of Baptiste and Le Pape [2] within 4000 failures. Their “left-
shift/right-shift” approach could solve all 40 instances in 30 min, with an average of
3,634 failures and 39.4 s on a 200 MHz machine. All our approaches with TimeD and
Vsids find the optimal solution faster and in fewer failures (between a factor of 1.39
and 2.4).

Next we compare the TimeD decomposition (Sgs + t) and global propagator
(Sgs + g) against implementations of cumulative in sicstus v4.0 (default, and
with the flag global) and eclipse v6.0 (using its 3 cumulative versions from
the libraries cumulative, edge_finder and edge_finder3). We also compare
against (FD + t) a decomposition without explanation (a normal FD solver)
executed in the G12 system. All approaches use the Sgs search strategy.

The results are shown in the Tables 3 and 4. Clearly the more expensive edge-
finding filtering algorithms are not advantageous on the J30 examples, but they do
become significantly beneficial on the highly cumulative BL instances. We can see
that none of the other approaches compare to the lazy clause generation approaches.
The best solver without learning is the sicstus cumulative with global flag.
Clearly nogoods are very important to fathom search space.

While the TimeD decomposition clearly outperforms TaskD on these small
examples, as the planning horizon grows at some point TaskD should be better, since
its model size is independent of the planning horizon. We took the J30 examples
and multiplied the durations and planning horizon by 10 and 100. We compare
the TimeD decomposition versus the (e) end-time TaskD decomposition (which
is slightly better than start-time (s)) and the global cumulative (g). The results
are shown in Table 5. First we should note that simply increasing the durations
makes the problems significantly more difficult. While the TimeD decomposition
is still just better than the TaskD decomposition for the 10× extended examples,

Table 4 Results of the FD
solvers on the BL instances

Solver #svd cmpr(7) all(40)

sicstus Default 32 2.87 25,241 195.05 1,896,062
Global 39 0.90 3,755 18.36 63,310

eclipse cumu 7 178.90 352,318 526.61 2,231,026
ef 37 43.06 53,545 102.60 229,332
ef3 37 35.56 39,836 81.47 144,051

G12 FD + t 30 6.71 72,427 216.87 2,650,886
Sgs + t 40 0.01 268 0.82 5,892
Sgs + g 40 0.01 278 0.88 5,723

276 Constraints (2011) 16:250–282

Table 5 Results on the
modified J30 instances

Search Duration Model #svd cmpr(462) all(480)

Sgs 1× e 477 0.11 542 5.93 5,331
t 480 0.08 501 2.83 4,230
g 480 0.05 371 3.04 3,919

10× e 471 0.58 1,812 14.76 9,512
t 476 1.03 676 11.04 4,972
g 478 0.10 393 4.92 4,291

100× e 466 4.87 4,586 23.40 10,813
t 465 15.58 724 35.02 1,582
g 477 0.70 403 8.51 3,684

Vsids 1× e 480 0.06 318 0.77 2,220
t 480 0.04 249 0.33 1,271
g 480 0.02 151 0.20 1,058

10× e 480 0.18 821 4.23 4,213
t 480 0.63 1,210 4.84 2,714
g 480 0.06 284 0.39 1,215

100× e 474 1.32 2,031 12.36 4,224
t 469 9.88 9,229 27.35 9,707
g 480 0.62 1,296 3.15 2,360

it is inferior for scheduling problems with very long durations. The most important
result visible from this experiment is the advantage of the global propagator over the
TimeD decomposition as the planning horizon gets larger. The global propagator is
by far the best approach for the larger problems since it has the O(n2) complexity of
the TaskD decomposition but the same propagation strength as the much stronger
TimeD decomposition. Note also how the failures get dramatically worse for the
TimeD decomposition using Vsids as the problem grows. This illustrates how the
large number of Booleans in the decomposition makes the Vsids heuristic less
effective.

8.2 Results on J60, J90 and J120

We now examine the larger instances J60, J90 and J120 from PSPLib. For J60 we
compare the most competitive search approaches from the previous subsection:
Vsids, Restart, Hot Start and Hot Restart using the TimeD decomposition and
global propagator. For this suite our solvers cannot solve all 480 instances within
10 min. The results are presented in Table 6. For these examples we show the average
distance of the makespan from our best solution to the best known solution from

Table 6 Results on J60
instances for TimeD and
global propagator

Search Model #svd Avg. dist. cmpr(425) all(480)

Vsids t 426 4.4 4.85 7,216 72.71 41,891
g 430 6.2 2.99 4,943 67.13 52,016

Restart t 428 4.5 3.53 5,139 68.04 61,558
g 430 3.7 2.50 4,418 66.01 60,518

Hot Start t 429 9.3 2.91 4,629 66.64 52,812
g 428 18.1 2.93 4,848 66.19 57823

Hot Restart t 429 4.0 3.28 4,982 66.60 60,146
g 430 3.9 2.60 4,658 66.18 60,652

Constraints (2011) 16:250–282 277

Table 7 Results on J90 and
J120 instances for TimeD and
global propagator

J90

Search Model #svd Avg. dist. cmpr(395) all(480)

Hot Restart t 396 7.5 4.16 4,364 108.90 90,582
g 397 7.5 3.34 3,950 108.57 90,134

J120

Search Model #svd Avg. dist. cmpr(274) all(600)

Hot Restart t 274 9.7 8.50 8,543 329.46 234,897
g 282 9.6 5.40 7,103 324.51 242,343

PSPLib (most of which are generated by specialised heuristic methods), as well as
the usual time and number of failures comparisons. Many of these are currently open
problems. Our best approaches close 24 open instances. While all of the methods
are quite competitive we see that restarting is valuable for improving the average
distance from the best known optimal, and the hybrid approach Hot Restart is
marginally more robust than the others. Interestingly Hot Start can clearly force
the search into a less promising area than just plain Vsids.

For the largest instances J90 and J120 we ran only Hot Restart since it is the most
robust search strategy, using the TimeD decomposition and the global propagator.
The results are presented in the Table 7 which shows that the global propagator is
superior to the TimeD decomposition. In total we close 15 and 27 open instances in
J90 and J120 respectively (see Appendix A for more details).

We compare our best methods Hot Restart with either t or g to the method by
Laborie [23] that uses minimal critical sets as a branching scheme and was imple-
mented in ILOG Scheduler 6.1 using as filtering algorithms among others time-
table and edge-finding. His method is the best published method so far on the J60,
J90, and J120 instances.

Table 8 shows the percentage of solved instances within a maximal solve time. We
give an equivalent time to our solver taking into account the speeds of the processors:
2.0 GHz vs. 1.4 GHz. At the top of the table is the time cutoff for a 1.4 GHz processor,
and at the bottom the approximately equivalent cutoff times for a 2.0 GHz machine.
Note, that all ∗ marked 2.0 GHz times are much lower than the equivalent time for
the 1.4 GHz processor. Clearly this comparison can only be seen as indicative.

Our methods clearly outperforms Laborie’s method: for every class our methods
were able to solve more problems within 10s than they could solve in half an hour
respectively on their machine. Interestingly, our solver could not solve six instances

Table 8 Comparison between Laborie’s method, Hot Restart + t and g

1.4 GHz J60 J90 J120

15 s 300 s 1800 s 15 s 300 s 1800 s 15 s 300 s 1800 s

Laborie – 84.2 85.0 – 78.5 79.4 – 41.3 41.7
Hot Restart + t 84.8 89.2 89.4 79.8 81.7 82.5 42.3 45.2 45.7
Hot Restart + g 85.8 89.0 89.6 80.0 81.9 82.7 42.7 45.8 47.0

2.0 GHz 10 s 200 s 600 s* 10 s 200 s 600 s* 10 s 200 s 600 s*

278 Constraints (2011) 16:250–282

which were solved by others. We can also see the advantage of the global propagator
increases with increasing problem size.

Finally we used Hot Start + g to try to improve lower bounds of the remaining
open problems, by searching for a solution to the problem with the makespan
varying from the best known lower bound to the best known upper bound from
PSPLib. In this way we closed 6 more problems and improved 78 lower bounds (see
Appendix B).

9 Conclusion

We present a new approach solving Rcpsp problems by using cumulative con-
straints with explanation in a lazy clause generation system. First we show that
modelling cumulative constraints by decomposition and using lazy clause genera-
tion is highly competitive. We then improve this by building a global cumulative
propagator with explanation. Benchmarks from the PSPLib show the strong power
of nogoods and Vsids style search to fathom a large part of the search space. Without
building complex specific global propagators or highly specialised search algorithms
we are able to compete with highly specialised Rcpsp solving approaches and close
71 open problems.

Acknowledgements We would like to thank Phillipe Baptiste for suggesting this line of enquiry.
NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council.

Appendix A: Closed instances

In the Table 9 we list all previously open instances (wrt. [23, 32], and [25]) with their
optimal makespan which were closed by Hot Restart with the global cumulative
or some other method. In the last case a footnote is given for these instances. The
optimal makespan of almost all closed instances correspond to the previously best
known upper bound found by local search heuristics, except for the J120 instances
8_3 and 48_5 where our solver could reduce them by 1 to 95 and 110 resp. Note that
Hot Restart with the TimeD decomposition was also capable of closing 63 of these
instances.

In total 71 instances of 504 open instances are closed with 64 instances by Hot
Restart with cumulative (g), one by Hot Restart with TimeD, one by Vsids
with cumulative, four by the lower bound computation (see Appendix B) and one
by a combination of two methods.8

Appendix B: New lower bounds

We tried to compute new lower bounds using Hot Start with global cumulative
for the remaining open instances. These experiments were carried out on the same
machine with the same (overall) time limit. (cf. Section 8). We set the makespan to

8Closed by Hot Restart and lower bound computation. Hot Restart decreased the previously best
known upper bound to 95 and the lower bound computation proved the optimality of this new bound.

Constraints (2011) 16:250–282 279

Table 9 Closed instances

J60 Instance 5_10 9_2 9_4 14_1 14_10 17_8 21_9 25_1
Makespan 81 82 87 61 72 85 89 114
Instance 25_3 25_5a 25_9 30_5 30_7 30_10 41_1 41_2
Makespan 113 98 99 76 86 86 122 113
Instance 41_6 41_9 46_4 46_5 46_6 46_7 46_9 46_10
Makespan 134 131 74 91 90 78 69 88

J90 Instance 5_1 5_2 21_2c 21_4 21_5 21_6 21_9 21_10
Makespan 78 93 116 106 112 106 121 109
Instance 26_5b 37_1 37_4 37_5 37_8c 37_9 37_10c 42_2
Makespan 85 110 123 126 119 123 123 102
Instance 42_7 42_10
Makespan 87 90

J120 Instance 1_3 1_8 1_10 2_2 8_3d 21_2 21_7 22_3
Makespan 125 109 108 75 95 117 111 96
Instance 22_8 28_4 28_8 28_9 28_10 29_4 41_2 41_9
Makespan 103 112 99 98 116 80 141 121
Instance 42_5 42_8 48_1 48_5 48_8 48_9 48_10 49_3
Makespan 120 113 100 110 116 113 111 96
Instance 49_4 49_5 49_7 49_10 50_4c

Makespan 96 89 99 97 100
a Closed by Vsids + g
bClosed by Hot Restart + t
cClosed by lower bound computation by proof of the equality of lower and best known upper bound
d See footnote 8

Table 10 New lower bounds on all instances

J60 Instance 9_3 9_5 9_6 9_8 9_9 9_10 25_2 25_4
LB 99 80 105 94 98 88 95 105
Instance 25_6 25_7 25_8 25_10 29_2 29_9 30_2 41_3
LB 105 88 95 107 123 105 69 89
Instance 41_5 41_10 45_3 45_4
LB 109 105 133 101

J90 Instance 5_4 5_6 5_8 5_9 21_1 21_7 21_8 37_2
LB 101 85 96 113 109 105 107 113
Instance 37_6 41_3 41_7 46_4
LB 129 147 144 92

J120 Instance 1_1 6_8 7_2 7_3 7_6 8_2 8_4 8_6
LB 104 140 113 97 115 101 91 84
Instance 9_4 26_2 26_4 26_5 26_7 26_8 26_9 26_10
LB 84 158 160 138 144 167 160 177
Instance 27_2 27_5 27_7 27_10 28_7 29_3 34_8 42_1
LB 109 105 118 110 108 96 86 106
Instance 46_1 46_2 46_3 46_5 46_7 46_9 46_10 47_1
LB 171 186 162 135 155 156 174 129
Instance 47_2 47_4 47_5 47_9 48_3 48_6 48_7 49_2
LB 126 119 125 140 109 102 105 108
Instance 53_3 53_4 53_9 54_7 54_10 60_2
LB 105 137 155 108 107 82

280 Constraints (2011) 16:250–282

the best known lower bound, and tried to find a solution, if this failed we increased
the makespan by one and re-solved. If a solution was found this is the optimal, if
we can prove failure for a given makespan we have increased the lower bound. If
the increased lower bound equaled the best known upper bound we have proved the
optimality of the upper bound and closed the instance as well.

In total this method closed 6 more instances (see Appendix A) and improved the
lower bound by 78 instances of the remaining 433 open instances. The improved
lower bounds are listed in Table 10.

References

1. Aggoun, A., & Beldiceanu, N. (1993). Extending CHIP in order to solve complex scheduling and
placement problems. Mathematical and Computer Modelling, 17(7), 57–73.

2. Baptiste, P., & Le Pape, C. (2000). Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems. Constraints, 5(1–2),
119–139.

3. Blazewicz, J., Lenstraand, J. K., & Rinnooy Kan, A. H. G. (1983). Scheduling subject to resource
constraints: Classification and complexity. Discrete Applied Mathematics, 5, 11–24.

4. Carlier, J., & Pinson, E. (2004). Jackson’s pseudo-preemptive schedule and cumulative schedul-
ing problems. Discrete Applied Mathematics, 145(1), 80–94. doi:10.1016/j.dam.2003.09.009.

5. Caseau, Y., & Laburthe, F. (1996). Cumulative scheduling with task intervals. In Procs. of the
1996 Joint International Conference and Symposium on Logic Programming (pp. 363–377). MIT.
citeseer.ist.psu.edu/caseau94cumulative.html.

6. Claessen, K., Een, N., Sheeran, M., Sörensson, N., Voronov, A., & Åkesson, K. (2009). Sat-
solving in practice, with a tutorial example from supervisory control. Discrete Event Dynamic
Systems, 19(4), 495–524. doi:10.1007/s10626-009-0081-8.

7. Davis, M., Logemman, G., & Loveland, D. (1962). A machine program for theorem proving.
Communications of the ACM, 5(7), 394–397.

8. Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artif icial Intelligence,
49, 61–95.

9. Demeulemeester, E. L., & Herroelen, W. S. (1997). New benchmark results for the resource-
constrained project scheduling problem. Management Science, 43(11), 1485–1492.

10. Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. In E. Giunchiglia & A. Tacchella
(Eds.), Proceedings of SAT 2003, LNCS (Vol. 2919, pp. 502–518). Heidelberg: Springer.

11. El-Kholy, A. O. (1996). Resource feasibility in planning. Ph.D. thesis, Imperial College,
University of London.

12. Erschler, J., & Lopez, P. (1990). Energy-based approach for task scheduling under time and
resources constraints. In 2nd International Workshop on Project Management and Scheduling
(pp. 115–121). France: Compiègne.

13. Feydy, T., & Stuckey, P. J. (2009). Lazy clause generation reengineered. In I. Gent (Ed.),
Proceedings of the 15th International Conference on Principles and Practice of Constraint Pro-
gramming, LNCS (Vol. 5732, pp. 352–366). Springer-Verlag. doi:10.1007/978-3-642-04244-7_29.

14. Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of state-of-the-art heuristics for the
resource-constrained project scheduling problem. European Journal of Operational Research,
127(2), 394–407. doi:10.1016/S0377-2217(99)00485-3.

15. Jussien, N. (2003). The versatility of using explanations within constraint programming. Research
Report 03-04-INFO, École des Mines de Nantes, Nantes, France. http://www.emn.fr/jussien/
publications/jussien-RR0304.pdf.

16. Jussien, N., & Barichard, V. (2000). The PaLM system: Explanation-based constraint program-
ming. In Proceedings of Techniques foR Implementing Constraint Programming Systems (TRICS
2000) (pp. 118–133). http://www.emn.fr/jussien/publications/jussien-WCP00.pdf.

17. Jussien, N., & Lhomme, O. (2002). Local search with constraint propagation and conflict-based
heuristics. Artif icial Intelligence, 139(1), 21–45.

http://dx.doi.org/10.1016/j.dam.2003.09.009
citeseer.ist.psu.edu/caseau94cumulative.html
http://dx.doi.org/10.1007/s10626-009-0081-8
http://dx.doi.org/10.1007/978-3-642-04244-7_29
http://dx.doi.org/10.1016/S0377-2217(99)00485-3
http://www.emn.fr/jussien/publications/jussien-RR0304.pdf
http://www.emn.fr/jussien/publications/jussien-RR0304.pdf
http://www.emn.fr/jussien/publications/jussien-WCP00.pdf

Constraints (2011) 16:250–282 281

18. Jussien, N., Debruyne, R., & Boizumault, P. (2000). Maintaining arc-consistency within dynamic
backtracking. In Principles and Practice of Constraint Programming—CP 2000, no. 1894 in
Lecture Notes in Computer Science (pp. 249–261). Singapore: Springer-Verlag.

19. Katsirelos, G., & Bacchus, F. (2005). Generalized nogoods in csps. In M. M. Veloso &
S. Kambhampati (Eds.), National Conference on Artif icial Intelligence (pp. 390–396). AAAI
Press/The MIT.

20. Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods re-
visited: Theory and computation. European Journal of Operational Research, 90(2), 320–333.
doi:10.1016/0377-2217(95)00357-6.

21. Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-
constrained project scheduling: An update. European Journal of Operational Research, 174(1),
23–37. doi:10.1016/j.ejor.2005.01.065.

22. Kolisch, R., & Sprecher, A. (1997). PSPLIB—A project scheduling problem library. European
Journal of Operational Research, 96(1), 205–216. doi:10.1016/S0377-2217(96)00170-1.

23. Laborie, P. (2005). Complete MCS-based search: Application to resource constrained project
scheduling. In L. P. Kaelbling & A. Saffiotti (Eds.), Proceedings IJCAI 2005 (pp. 181–186).
Professional Book Center. http://ijcai.org/papers/0571.pdf.

24. Lahrichi, A. (1982). Scheduling: The notions of hump, compulsory parts and their use in cumula-
tive problems. Comptes Rendus de l’Académie des Sciences. Paris, Série 1, Mathématique, 294(2),
209–211.

25. Liess, O., & Michelon, P. (2008). A constraint programming approach for the resource-
constrained project scheduling problem. Annals of Operations Research, 157(1), 25–36.
doi:10.1007/s10479-007-0188-y.

26. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P. J., Garcia de la Banda, M., &
Wallace, M. G. (2008). The design of the Zinc modelling language. Constraints, 13(3), 229–267.
doi:10.1007/s10601-008-9041-4.

27. Mercier, L., & Van Hentenryck, P. (2008). Edge finding for cumulative scheduling. INFORMS
Journal on Computing, 20(1), 143–153. doi:10.1287/ijoc.1070.0226.

28. Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering
an efficient SAT solver. In Design automation conference (pp. 530–535). New York: ACM.
doi:10.1145/378239.379017.

29. Nuijten, W. P. M. (1994). Time and resource constrained scheduling. Ph.D. thesis, Eindhoven
University of Technology.

30. Ohrimenko, O., Stuckey, P., & Codish, M. (2009). Propagation via lazy clause generation.
Constraints, 14(3), 357–391.

31. Ohrimenko, O., Stuckey, P. J., & Codish, M. (2007). Propagation = lazy clause generation.
In Procs. of the CP2007, LNCS (Vol. 4741, pp. 544–558). Springer-Verlag. doi:10.1007/978-3-
540-74970-7_39.

32. PSPLib—project scheduling problem library (2009). http://129.187.106.231/psplib/. Accessed 23
April 2009.

33. Schulte, C., & Stuckey, P. (2008). Efficient constraint propagation engines. ACM Transactions
on Programming Languages and Systems, 31(1), 1–43.

34. Schutt, A. (2006). Entwicklung suchraumeinschränkender Verfahren zur Constraint-basierten
Lösung kumulativer Ressourcenplanungsprobleme. Master’s thesis, Humboldt-Universität zu
Berlin.

35. Schutt, A., Feydy, T., Stuckey, P. J., & Wallace, M. G. (2009). Why cumulative decomposition
is not as bad as it sounds. In I. Gent (Ed.), Proceedings of the 15th International Confer-
ence on Principles and Practice of Constraint Programming, LNCS (Vol. 5732, pp. 746–761).
Springer-Verlag.

36. Schutt, A., Wolf, A., & Schrader, G. (2006). Not-first and not-last detection for cumulative
scheduling in O(n3 log n). In Declarative programming for knowledge management, Lecture
Notes in Computer Science (Vol. 4369, pp. 66–80). Springer-Verlag. doi:10.1007/11963578. INAP
2005—16th international conference on applications of declarative programming and knowledge
management.

37. Vilím, P. (2005). Computing explanations for the unary resource constraint. In Integration of AI
and OR techniques in Constraint Programming for Combinatorial Optimization problems, LNCS
(Vol. 3524, pp. 396–409). Springer-Verlag. doi:10.1007/11493853_29. http://kti.ms.mff.cuni.
cz/∼vilim/cpaior2005.pdf.

http://dx.doi.org/10.1016/0377-2217(95)00357-6
http://dx.doi.org/10.1016/j.ejor.2005.01.065
http://dx.doi.org/10.1016/S0377-2217(96)00170-1
http://ijcai.org/papers/0571.pdf
http://dx.doi.org/10.1007/s10479-007-0188-y
http://dx.doi.org/10.1007/s10601-008-9041-4
http://dx.doi.org/10.1287/ijoc.1070.0226
http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.1007/978-3-540-74970-7_39
http://dx.doi.org/10.1007/978-3-540-74970-7_39
http://129.187.106.231/psplib/
http://dx.doi.org/10.1007/11963578
http://dx.doi.org/10.1007/11493853_29
http://kti.ms.mff.cuni.cz/~vilim/cpaior2005.pdf
http://kti.ms.mff.cuni.cz/~vilim/cpaior2005.pdf

282 Constraints (2011) 16:250–282

38. Vilím, P. (2009). Edge finding filtering algorithm for discrete cumulative resources in O(kn log n).
In Principles and Practice of Constraint Programming—CP 2009, LNCS (Vol. 5732, pp. 802–816).
Springer-Verlag. doi:10.1007/978-3-642-04244-7_62.

39. Wolf, A., & Schrader, G. (2006). O(n log n) overload checking for the cumulative constraint
and its application. In Declarative programming for knowledge management, Lecture Notes
in Computer Science (Vol. 4369, pp. 88–101). Springer-Verlag. doi:10.1007/11963578_8. INAP
2005—16th international conference on applications of declarative programming and knowledge
management.

http://dx.doi.org/10.1007/978-3-642-04244-7_62
http://dx.doi.org/10.1007/11963578_8

	Explaining the cumulative propagator
	Abstract
	Introduction
	Related work
	cumulative
	Explanations

	Lazy clause generation
	Finite domain propagation
	SAT solving
	Lazy clause generation

	Modelling the cumulative resource constraint
	Propagating the cumulative constraint by decomposition
	Time decomposition
	Task decomposition

	Explanations for the global cumulative
	Consistency check
	Time-table filtering
	(Extended) edge-finding filtering

	Resource-constrained project scheduling problems
	Search using serial scheduling generation
	Search using variable state independent decaying sum
	Hybrid search strategies

	Experiments
	Results on J30 and BL instances
	Results on J60, J90 and J120

	Conclusion
	Appendix A: Closed instances
	Appendix B: New lower bounds
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

