
A Scalable Sweep Algorithm

for the cumulative Constraint

Arnaud Letort1,�, Nicolas Beldiceanu1, and Mats Carlsson2

1 TASC team, (EMN-INRIA,LINA) Mines de Nantes, France
{arnaud.letort,nicolas.beldiceanu}@mines-nantes.fr

2 SICS, P.O. Box 1263, SE-164 29 Kista, Sweden
matsc@sics.se

Abstract. This paper presents a sweep based algorithm for the cu-
mulative constraint, which can operate in filtering mode as well as in
greedy assignment mode. Given n tasks, this algorithm has a worst-
case time complexity of O(n2). In practice, we use a variant with better
average-case complexity but worst-case complexity of O(n2 log n), which
goes down to O(n log n) when all tasks have unit duration, i.e. in the
bin-packing case. Despite its worst-case time complexity, this algorithm
scales well in practice, even when a significant number of tasks can be
scheduled in parallel. It handles up to 1 million tasks in one single cu-
mulative constraint in both Choco and SICStus.

1 Introduction

In the 2011 Panel of the Future of CP [6], one of the identified challenges for
CP was the need to handle large scale problems. Multi-dimensional bin-packing
problems were quoted as a typical example [10], particularly relevant in the
context of cloud computing. Indeed the importance of bin-packing problems
was recently highlighted in [12] and is part of the topic of the 2012 Roadef
Challenge [13].

Till now, the tendency is to use dedicated algorithms and metaheuristics [17]
to cope with large instances. Following the line of research initiated with the geost
constraint [2], our main objective is to provide global constraints that can han-
dle a significant sub-problem while scaling well in a traditional CP solver. Typi-
cally, filtering algorithms focus on having the best possible deductions [9,20,21],
rather than on scalability issues. This explains why all existing papers on cumu-
lative [9,16,20,21] and bin-packing [18,7,14] usually focus on small size problems
(i.e., typically less than 200 tasks up to 10000 tasks) but leave open the scala-
bility issue. Like what was already done for the geost constraint, which handles
up to 2 million boxes, our goal is to come up with a lean filtering algorithm for
cumulative. In order to scale well in terms of memory, we design a lean filtering
algorithm, which can also be turned into a greedy algorithm that benefits from
the filtering of the lean filtering algorithm while fixing tasks. This approach

� Partially founded by the SelfXL project (contract ANR-08-SEGI-017).

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 439–454, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



440 A. Letort, N. Beldiceanu, and M. Carlsson

allows to avoid the traditional memory bottleneck problem of CP solvers due
to trailing or copying data structures [15], while still benefitting from filtering.
Moreover, like for geost our lean filtering algorithm and its derived greedy as-
signment mode are compatible in the sense that they can both be used at each
node of the search tree, i.e., first call the greedy mode for trying to find a so-
lution and, if that doesn’t work, use the filtering mode to restrict the variables
and continue the search.

This paper focuses on the cumulative constraint, originally introduced in [1]
for modeling resource scheduling problems:

cumulative([s0, . . . , sn−1], [d0, . . . , dn−1], [e0, . . . , en−1], [h0, . . . , hn−1], limit)

where [s0, . . . , sn−1], [e0, . . . , en−1] are non-empty lists of domain variables,1 and
[d0, . . . , dn−1], [h0, . . . , hn−1] are lists of non-negative integers and limit is a non-
negative integer. The cumulative constraint holds if (1-2) are true:

∀t ∈ [0, n− 1] : st + dt = et (1)

∀i ∈ N :
∑

t∈[0,n−1]:
i∈[st,et)

ht ≤ limit (2)

Section 2 recalls the 2001 sweep algorithm for cumulative [3] and provides a crit-
ical analysis of its major bottlenecks. Then, Section 3 presents the new sweep
based filtering algorithm and its greedy mode. Section 4 evaluates its imple-
mentations in both Choco [19] and SICStus [5] and compares them with the
2001 implementations [3] in both systems, as well as to a dedicated bin-packing
constraint used in Entropy [8].

2 A Critical Analysis of the 2001 Sweep Algorithm

The algorithm is based on the sweep idea, which is widely used in computational
geometry [4]. In constraint programming, sweep was used for implementing the
non-overlapping constraint [2] as well as the cumulative constraint [3].

In 2 dimensions, a plane sweep algorithm solves a problem by moving a vertical
line from left to right. The algorithm uses two data structures:

– The sweep-line status, which contains some information related to the current
position δ of the vertical line.

– The event point series, which holds the events to process, ordered in increas-
ing order according to the abscissa.

The algorithm initializes the sweep-line status for the starting position of the ver-
tical line. Then the line “jumps” from event to event; each event is handled and
inserted or removed from the sweep-line status. In our context, the sweep-line

1 A domain variable v is a variable that ranges over a finite set of integers; v and v
respectively denote the minimum and maximum value of variable v.



A Scalable Sweep Algorithm for the cumulative Constraint 441

scans the time axis in order to build a pessimistic cumulated resource consump-
tion profile (PCRCP) and to perform checks and pruning according to this profile
and to limit . So the algorithm is a sweep variant of the timetable method [11].
Before defining the notion of PCRCP let us first introduce a running example
that will be used throughout for illustrating the different algorithms.

Example 1. Consider four tasks t0, t1, t2, t3 which have the following start, duration,
end and height :

• t0 : s0 = 0, d0 = 1, e0 = 1, h0 = 3,
• t1 : s1 ∈ [0, 2], d1 = 2, e1 ∈ [2, 4], h1 = 3,
• t2 : s2 ∈ [2, 4], d2 = 3, e2 ∈ [5, 7], h2 = 3,
• t3 : s3 ∈ [5, 7], d3 = 1, e3 ∈ [6, 8], h3 = 3,

subject to the constraint cumulative([s0, s1, s2, s3], [d0, d1, d2, d3], [e0, e1, e2, e3],
[h0, h1, h2, h3], 5). Since task t0 starts at instant 0 and since t1 cannot overlap t0
without exceeding the resource limit 5, the earliest start of t1 is adjusted to 1. Since
task t1 occupies interval [2, 3) and since t1 and t2 also cannot overlap for the same
reason, the earliest start of t2 is adjusted to 3. Since task t2 occupies interval [4, 6)
and since t2 and t3 also cannot overlap, the earliest start of t3 is adjusted to 6. The
purpose of the sweep algorithm is to perform such filtering in an efficient way. ��

Given a set of tasks T , the PCRCP of the set T consists of the aggregation of
the compulsory parts of the tasks in T , where the compulsory part of a task is
the intersection of all its feasible instances. On the one hand, the height of the
compulsory part of a task t at a given time point i is defined by ht if i ∈ [st, et)
and 0 otherwise. On the other hand, the height of the PCRCP at a given time
point i is given by

∑
t∈T ,

i∈[st,et)

ht.

Continuation of Example 1 (Compulsory Part of a Task). Task t0 and t2 initially have
a non-empty compulsory part: task t0 uses 3 resource units on interval [0, 1), while task
t2 uses 3 resource units on interval [4, 5). After reaching the fixpoint, task t1 also has
a non-empty compulsory part: task t1 uses 3 resource units on interval [2, 3) while the
compulsory part of t2 now occupies interval [4, 6). ��

Event Point Series. In order to build the PCRCP and to prune the start of
the tasks, the sweep algorithm considers the following types of events:

– Profile events for building the PCRCP correspond to the latest starts and
the earliest ends of the tasks for which the latest start is strictly less than
the earliest end (i.e. the start and the end of a non-empty compulsory part).

– Pruning events for recording the tasks to prune, i.e. the not yet fixed tasks
that intersect δ.

Table 1 (top) describes the different types of events, where each event cor-
responds to a quadruple 〈event type, task generating the event , event date,
available space increment〉. These events are sorted by increasing date.

Continuation of Example 1 (Generated Events). The following events are generated
and sorted by increasing date: 〈SCP , 0, 0,−3〉, 〈PR, 1, 0, 0〉, 〈ECP , 0, 1, 3〉, 〈PR, 2, 2, 0〉,
〈SCP , 2, 4,−3〉, 〈ECP , 2, 5, 3〉, 〈PR, 3, 5, 0〉. ��



442 A. Letort, N. Beldiceanu, and M. Carlsson

Table 1. Event types for the 2001 sweep (top) and the dynamic sweep (bottom) with
corresponding condition for generating them. The last event attribute is only relevant
for event types SCP , ECP and ECPD .

Generated Events (2001 algo.) Conditions

〈SCP , t, st,−ht〉 and 〈ECP , t, et,+ht〉 st < et

〈PR, t, st, 0〉 st �= st

New Events Events (2001 algo.) Conditions

〈SCP , t, st,−ht〉 〈SCP , t, st,−ht〉 st < et

〈ECPD , t, et,+ht〉 〈ECP , t, et,+ht〉 st < et

〈CCP , t, st, 0〉 st ≥ et

〈PR, t, st, 0〉 〈PR, t, st, 0〉 st �= st

Sweep-Line Status. The sweep-line maintains three pieces of information:

– The current sweep-line position δ, initially set to the date of the first event.
– The amount of available resource at instant δ, denoted by gap, i.e., the

difference between the resource limit and the height of the PCRCP.
– A list of tasks Tprune , recording all tasks that potentially can overlap δ.

The sweep algorithm first creates and sorts the events wrt. their date. Then, the
sweep-line moves from one event to the next event, updating gap and Tprune .
Once all events at δ have been handled, the sweep algorithm tries to prune
all tasks in Tprune wrt. gap and interval [δ, δ′) where δ′ is the next sweep-line
position, i.e. the date of the next event. More precisely, given a task t ∈ Tprune
such that ht > gap, the interval [δ−dt+1, δ′) is removed from the start of task t.

Continuation of Example 1 (Illustrating the 2001 Sweep Algorithm). The sweep algo-
rithm reads the two events 〈SCP , 0, 0,−3〉, 〈PR, 1, 0, 0〉 and sets gap to 5−3 and Tprune
to {t1}. During a first sweep, the compulsory part of task t0 (see Part (A) of Figure 1)
permits to prune the start of t1 since the gap on [0, 1) is strictly less than h1.The prun-
ing of the earliest start of t1 during the first sweep causes the creation of a compulsory
part for task t1 which is not immediately used to perform more pruning (see Part (B)).
It is necessary to wait for a second sweep to take advantage of this new compulsory
part to adjust the earliest start of task t2. This last adjustment causes the extension
of the compulsory part of t2 on [4, 6) (see Part (C)). A third sweep adjusts the earliest
start of task t3 which cannot overlap t2. A fourth and last sweep is performed to find
out that the fixpoint was reached (see Part (D)). ��

Weakness of the 2001 Sweep Algorithm

➀ [Too static] The potential increase of the PCRCP during a single sweep is
not dynamically taken into account. In other words, creations and extensions
of compulsory parts during a sweep are not immediately used to perform
more pruning while sweeping. Example 1 illustrates this point since the sweep
needs to be run four times before reaching its fixpoint.



A Scalable Sweep Algorithm for the cumulative Constraint 443

(A)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

t0 t2

t0 s0 e0

t1 s1 e1

t2 s2 e2

t3
s3 e3

(B)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

t0 t1 t2

t0 s0 e0

t1 s1 e1

t2 s2 e2

t3
s3 e3

(C)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

t0 t1 t2

t0 s0 e0

t1 s1 e1

t2 s2 e2

t3
s3 e3

(D)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

t0 t1 t2

t0 s0 e0

t1 s1 e1

t2 s2 e2

t3
s3 e3

Fig. 1. Parts (A), (B), (C) and (D) respectively represent the earliest positions of the
tasks and the PCRCP, of the initial problem described in Example 1, after a first sweep,
after a second sweep and after a third sweep

➁ [Often reaches its worst-case time complexity]The worst-case time
complexity of the 2001 sweep algorithm is O(n2) where n is the number of
tasks. This complexity is often reached in practice when most of the tasks
can be placed everywhere on the time line. The reason is that it needs at
each value of δ to systematically re-scan all tasks that overlap δ. Profiling
the 2001 implementation indicates that the sweep algorithm spends up to
45% of its overall running time scanning the list of potential tasks to prune.

➂ [Creates holes in the domains] The 2001 sweep algorithm removes in-
tervals of consecutive values from domain variables. This is a weak point,
which prevents handling large instances since a variable cannot just be com-
pactly represented by its minimum and maximum values.

➃ [Does not take advantage of bin-packing] For instances where all
tasks have duration one, the worst time complexity O(n2) is left unchanged.

3 The Dynamic Sweep Algorithm

This section presents our contribution, a new sweep algorithm that handles the
four performance issues of the 2001 sweep algorithm raised at the end of Sect.2,
i.e., points ➀ to ➃. We first introduce some general design decisions of the
new sweep algorithm as well as the property the algorithm maintains, and then



444 A. Letort, N. Beldiceanu, and M. Carlsson

describe it in a similar way the 2001 original sweep algorithm was presented in
Sect. 2. We first present the new event point series, then the new sweep-line
status, and the overall algorithm. Finally we prove that the property initially
introduced is maintained by the new algorithm and give its complexity in the
general case as well as in the case where all task durations are fixed to one.

The first difference from the 2001 sweep is that our algorithm only deals with
domain bounds, which is a good way to reduce the memory consumption for the
representation of domain variables (see Point ➂ of Sect. 2).2 Consequently, we
need to change the 2001 algorithm, which creates holes in the domain of task
origins. The new sweep algorithm filters the task origins in two distinct sweep
stages. A first stage, called sweep min, tries to adjust the earliest starts of tasks
by performing a sweep from left to right, and a second stage tries to adjust the
latest ends by performing a sweep from right to left. The greedy mode of the
new sweep algorithm will be derived from sweep min, in the sense that it takes
advantage of the propagation performed by sweep min and fixes the start of
tasks rather than adjusting them. W.l.o.g, we focus from now on the first stage
sweep min since the second stage is completely symmetric.

As illustrated by Example 1, the 2001 sweep algorithm needs to be re-run
several times in order to reach its fixpoint (i.e., 4 times in our example). This
is due to the fact that, during one sweep, restrictions on task origins are not
immediately taken into account. Our new algorithm, sweep min, dynamically
uses these deductions to reach its fixpoint in one single sweep. To deal with this
aspect, our new sweep algorithm introduces the concept of conditional events,
i.e., events that are created while sweeping over the time axis.

We first give the property that holds when sweep min reaches its fixpoint.
This property will be proved at the end of this section.

Property 1. Given a cumulative constraint with its set of tasks T and its resource
limit limit , sweep min ensures that:

∀t ∈ T , ∀i ∈ [st, et) : ht +
∑

t′∈T \{t}:
i∈[st′ ,et′ )

ht′ ≤ limit (3)

Property 1 ensures that, for any task t of the cumulative constraint, one can
schedule t at its earliest start without exceeding the resource limit wrt. the
PCRCP for the tasks of T \{t}. We now present the different parts of the new
sweep algorithm.

3.1 Event Point Series

In order to address point ➀ [Too static] of Sect. 2, sweep min should handle
the extension and the creation of compulsory parts caused by the adjustment
of earliest starts of tasks in one single sweep. We therefore need to modify the

2 Note that most Operation Research scheduling algorithms only adjust the earliest
start and latest ends of tasks.



A Scalable Sweep Algorithm for the cumulative Constraint 445

events introduced in Table 1. The bottom part presents the events of sweep min
and their relations with the events of the 2001 algorithm.

– The event type 〈SCP , t, st,−ht〉 for the start of compulsory part of task t is
left unchanged. Note that, since sweep min only adjusts earliest starts, the
start of a compulsory part (which corresponds to a latest start) can never
be extended to the left.

– The event type 〈ECP , t, et, ht〉 for the end of the compulsory part of task t
is converted to 〈ECPD , t, et, ht〉 where D stands for dynamic. The date of
such event corresponds to the earliest end of t (also the end of its compulsory
part) and may increase due to the adjustment of the earliest start of t.

– A new event type 〈CCP , t, st, 0〉, where CCP stands for conditional compul-
sory part, is created for each task t that does not have any compulsory part.
At the latest, once the sweep-line reaches position st, it adjusts the earliest
start of t. Consequently the conditional event can be transformed into an
SCP and an ECPD events, reflecting the creation of compulsory part.

– The event type 〈PR, t, st, 0〉 for the earliest start of t is left unchanged.

On the one hand, some of these events have their dates modified (see ECPD).
On the other hand, some events create new events (see CCP). Consequently,
rather than just sorting all events initially, we insert them by increasing date
into a heap called hevents .

Continuation of Example 1 (New Generated Events for sweep min). The following
events are generated and sorted according to their date: 〈SCP , 0, 0,−3〉, 〈PR, 1, 0, 0〉,
〈ECPD,0,1, 3〉, 〈CCP,1,2, 0〉, 〈PR, 2, 2, 0〉, 〈SCP , 2, 4,−3〉, 〈ECPD,2,5,3〉,
〈PR, 3, 5, 0〉, 〈CCP,3,7, 0〉. ��

3.2 Sweep-Line Status

The sweep-line maintains the following pieces of information:

– The current sweep-line position δ, initially set to the date of the first event.
– The amount of available resource at instant δ, denoted by gap, i.e., the

difference between the resource limit and the height of the PCRCP.
– Two heaps hconflict and hcheck for partially avoiding

point ➁ [Often reaches its worst-case time complexity] of Sect. 2.
W.l.o.g. assume that the sweep-line is at its initial position and that we
handle an event of type PR (i.e., we try to find out the earliest possible
start of a task t).

• If the height of task t is strictly greater than the available gap at δ, we
know that we have to adjust the earliest start of t. In order to avoid
re-checking each time we move the sweep-line whether or not the gap is
big enough wrt. ht, we say that t is in conflict with δ. We insert task t
in the heap hconflict , which records all tasks that are in conflict with δ,
sorted by increasing height, i.e. the top of the heap hconflict corresponds
to the smallest value. This order is induced by the fact that, if we need to
adjust the earliest start of a task t, all earliest task starts with a height
greater than or equal to ht also need to be adjusted.



446 A. Letort, N. Beldiceanu, and M. Carlsson

• If the height of task t is less than or equal to the available gap at δ, we
know that the earliest start of task t could be equal to δ. But to be sure,
we need to check Property 1 for t (i.e., T = {t}). For this purpose we
insert t in the heap hcheck , which records all tasks for which we currently
check Property 1. Task t stays in hcheck until a conflict is detected (i.e., ht

is greater than the available gap, and t goes back in hconflict ) or until the
sweep-line passes instant δ + dt (and we have found a feasible earliest
start of task t wrt. Property 1). In the heap hcheck , tasks are sorted
by decreasing height, i.e. the top of the heap hcheck corresponds to the
largest value, since if a task t is not in conflict with δ, all other tasks of
hcheck of height less than or equal to ht are also not in conflict with δ.
In the following, empty(h) returns true if the heap h is empty, false
otherwise. Function get top key(h) returns the key of the top element in
the heap h. We introduce an array of integers mins, which stores for each
task t in hcheck the value of δ when t was added into hcheck .

3.3 Algorithm

The sweep min algorithm performs one single sweep over the event point series
in order to adjust the earliest start of the tasks wrt. Property 1. It consists of a
main loop, a filtering part and a synchronization part. This last part is required
in order to directly handle the deductions attached to the creation or increase
of compulsory parts in one single sweep. In addition to the heaps hcheck and
hconflict we introduce an array of booleans evup for which the tth entry indicates
whether events related to the compulsory part of t were updated or not. It is set
to true once we have found the final values of the start and end of the compulsory
part of t. We introduce a list newActiveTasks, which records all tasks that have
their PR event at δ. The primitive adjust min start(t , v) adjusts the minimum
value of the start variable of task t to value v.

Main Loop. The main loop (Algorithm 1) consists of:

– [INITIALIZATION] (lines 3 to 5). The events are generated and inserted into
hevents according to the conditions given in Table 1. The hcheck and hconflict

heaps are initialized as empty heaps. The list newActiveTasks is initialized
as an empty list. δ is set to the date of the first event.

– [MAIN LOOP] (lines 7 to 24). For each date the main loop processes all the
corresponding events. It consists of the following parts:

• [HANDLING A SWEEP-LINE MOVE] (lines 9 to 16). Each time the sweep-
line moves, we update the sweep-line status (hcheck and hconflict) wrt. the
new active tasks, i.e. the tasks for which the earliest start is equal to δ. All
the new active tasks that are in conflict with δ in the PCRCP are added
into hconflict (lines 9 and 10). For tasks that are not in conflict we check
whether the sweep interval [δ, δ′) is big enough wrt. their durations. Tasks
for which the sweep interval is too small are added into hcheck (line 10).



A Scalable Sweep Algorithm for the cumulative Constraint 447

1: function sweep min(n, s[0..n−1], s[0..n−1], e[0..n−1], d[0..n−1], h[0 ..n−1 ]) : boolean
2: [INITIALIZATION]

3: hevents ← generation of events wrt. n, st, st, d, et and h and Table 1.
4: hcheck , hconflict ← ∅; newActiveTasks ← ∅
5: δ ← get top heap(hevents); δ

′ ← δ; gap ← limit
6: [MAIN LOOP]

7: while ¬empty(hevents) do
8: [HANDLING A SWEEP-LINE MOVE]

9: if δ �= δ′ then
10: while ¬empty(newActiveTasks) do
11: extract first task t from newActiveTasks
12: if ht > gap then add 〈ht, t〉 in hconflict

13: else if dt > δ′ − δ then add 〈ht, t〉 in hcheck ; minst ← δ
14: else evupt ← true
15: if ¬filter min(δ, δ′, gap) then return false
16: δ ← δ′

17: [HANDLING CURRENT EVENT]

18: δ ← synchronize(hevents , δ)
19: extract 〈type , t, δ, dec〉 from hevents

20: if type = SCP ∨ type = ECPD then gap ← gap + dec
21: else if type = PR then newActiveTasks ← newActiveTasks ∪ {t}
22: [GETTING NEXT EVENT]

23: if empty(hevents) ∧ ¬filter min(δ,+∞, gap) then return false
24: δ′ ← synchronize(hevents , δ)
25: return true

Algorithm 1. False if a resource overflow is detected, true otherwise.

Then filter min (see Alg. 2) is called to update hcheck and hconflict and to
adjust the earliest start of tasks for which a feasible position was found.

• [HANDLING CURRENT EVENT] (lines 18 to 21). Conditional events (CCP)
and dynamic events (ECPD) at the top of hevents are processed (see
Alg. 3). The top event is extracted from the heap hevents . Depending
of its type (i.e., SCP or ECPD), the gap of the available resource is
updated, or (i.e., PR), the task is added into the list of new active tasks.

• [GETTING NEXT EVENT] (lines 23 to 24). If there is no more event in
hevents , filter min is called in order to empty the heap hcheck , which may
generate new compulsory part events.

The Filtering Part. Algorithm 2 processes tasks in hcheck and hconflict in order
to adjust the earliest start of the tasks. The main parts of the algorithm are:

– [CHECK RESOURCE OVERFLOW] (line 3). If the available resource gap is neg-
ative on the sweep interval [δ, δ′), Alg. 2 returns false meaning a failure
(i.e. the resource capacity limit is exceeded).

– [UPDATING TOP TASKS OF hcheck ] (lines 5 to 11). All tasks in hcheck of
height greater than the available resource gap are extracted.



448 A. Letort, N. Beldiceanu, and M. Carlsson

1: function filter min(δ, δ′, gap) : boolean
2: [CHECK RESOURCE OVERFLOW]

3: if gap < 0 then return false
4: [UPDATING TOP TASKS OF hcheck ]

5: while ¬empty(hcheck ) ∧ (empty(hevents) ∨ get top key(hcheck) > gap) do
6: extract 〈ht, t〉 from hcheck

7: if δ ≥ st ∨ δ −minst ≥ dt ∨ empty(hevents) then
8: adjust min start(t,minst)
9: if ¬evupt then update events of the compulsory part of t; evupt ← true
10: else
11: add 〈ht, t〉 in hconflict

12: [UPDATING TOP TASKS OF hconflict ]

13: while ¬empty(hconflict ) ∧ get top key(hconflict) ≤ gap do
14: extract 〈ht, t〉 from hconflict

15: if δ ≥ st then
16: adjust min start(t, st)
17: if ¬evupt then update events of the compulsory part of t; evupt ← true
18: else
19: if δ′ − δ ≥ dt then
20: adjust min start(t, δ)
21: if ¬evupt then update events of the compulsory part of t; evupt ← true
22: else
23: add 〈ht, t〉 in hcheck ; minst ← δ
24: return true

Algorithm 2. Tries to adjust earliest starts of tasks in hcheck and hconflict wrt.
the sweep interval [δ, δ′) and the available resource gap and returns false if a
resource overflow is detected, true otherwise.

• A first case to consider is when task t has been in hcheck long enough
(i.e. δ −minst ≥ dt, line 7), meaning that the task is not in conflict on
interval [minst , δ), whose size is greater than or equal to dt. Consequently,
we adjust the earliest start of task t to value minst .

• A second case to consider is when δ has passed the latest start of task
t (i.e. δ ≥ st, line 7). That means task t was not in conflict on interval
[minst , δ) either, and we can adjust its earliest start to minst .

• A third case is when there is no more event in the heap hevents

(i.e. empty(hevents), line 7). It means that the height of the PCRCP
is equal to zero and we need to empty hcheck .

• Otherwise, the task is added into hconflict (line 11).

– [UPDATING TOP TASKS OF hconflict ] (lines 13 to 23). All tasks in hconflict

that are no longer in conflict with δ are extracted. If δ has passed the latest
start of task t, we know that t cannot be scheduled before its latest position.
Otherwise, we compare the duration of t with the sweep interval and decide
whether to adjust the earliest start of t or to add it into hcheck .



A Scalable Sweep Algorithm for the cumulative Constraint 449

1: function synchronize(hevents , δ) : integer
2: [UPDATING TOP EVENTS]

3: repeat
4: if empty(hevents) then return −1
5: sync ← true; 〈date , t, type , dec〉 ← consult top event of hevents

6: [PROCESSING DYNAMIC EVENT]

7: if type = ECPD ∧ ¬evupt then
8: if t ∈ hcheck then update event date to minst + dt
9: else update event date to st + dt
10: evupt ← true; sync ← false;
11: [PROCESSING CONDITIONAL EVENT]

12: else if type = CCP ∧ ¬evupt ∧ date = δ then
13: if t ∈ hcheck ∧minst + dt > δ then
14: add 〈SCP , t, δ,−ht〉 and 〈ECPD , t,minst + dt, ht〉 into hevents

15: else
16: add 〈SCP , t, δ,−ht〉 and 〈ECPD , t, et, ht〉 into hevents

17: evupt ← true; sync ← false;
18: until sync
19: return date

Algorithm 3. Checks that the event at the top of hevents is updated and returns
the date of the next event or null if hevents is empty.

The Synchronization Part. Before each extraction or access to hevents , Alg. 3
checks and updates the top event and returns the next event date. The main
parts of the algorithm are:

– [UPDATING TOP EVENTS] (lines 3 to 18). Dynamic and conditional events
require to check whether the next event to be extracted by Alg. 1 needs to
be updated or not. The repeat loop updates the next event if necessary until
the top event is up to date.

– [PROCESSING DYNAMIC EVENT] (lines 7 to 10). An event of type ECPD must
be updated if the related task t is in hcheck or in hconflict . If t is in hconflict ,
it means that t cannot start before its latest starting time st. Consequently,
its ECPD event is pushed back to the date st + dt (line 9). If t is in hcheck ,
it means that its earliest start can be adjusted to minst. Consequently, its
ECPD event is updated to the date minst + dt (line 8).

– [PROCESSING CONDITIONAL EVENT] (lines 12 to 17). When the sweep-line
reaches the position of a CCP event for a task t, we need to know whether
or not a compulsory part for t is created. As evupt is set to false, we know
that t is either in hcheck or in hconflict . If t is in hconflict the task is fixed to
its latest position and related events are added into hevents (line 16). If t is
in hcheck , a compulsory part is created iff minst + dt > δ (lines 13-14).

Continuation of Example 1 (Illustrating the Dynamic Sweep Algorithm). The sweep
algorithm first reads the two events 〈SCP , 0, 0,−3〉, 〈PR, 1, 0, 0〉 and sets gap to 2.
Since the height of task t1 is greater than the available resource gap, t1 is added into



450 A. Letort, N. Beldiceanu, and M. Carlsson

hconflict (see Alg. 1 line 12 and Fig. 2 Part (A)). The call of filter min only checks
that the gap is non-negative. Then, the sweep-line moves to the position 1, reads the
event 〈ECPD, 0, 1,+3〉 and sets gap to 5. The call of filter min with δ = 1, δ′ = 2
and gap = 5 retrieves t1 from hconflict and inserts it into hcheck (see Alg. 2, line 23). In
synchronize (called in Alg. 1 line 24), the next event 〈CCP , 1, 2, 0〉 is converted into two
events 〈SCP , 1, 2,−3〉 and 〈ECPD , 1, 3,+3〉 standing for the creation of a compulsory
part on interval [2, 3) for the task t1 (see Fig. 2 Part (B)). Note that the creation
of the compulsory part occurs after the sweep-line position, which is key to ensuring
Property 1. ��

(A)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

t0 t2

t0 s0 e0

t1 s1 e1

t2 s2 e2

t3
s3 e3

δ = 0
gap = 2

hconflict = [t1]

hcheck = ∅

(B)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

t0 t1 t2

t0 s0 e0

t1 s1 e1

t2 s2 e2

t3
s3 e3

δ = 1
gap = 5

hconflict = ∅
hcheck = [t1]

(C)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

t0 t1 t2

t0 s0 e0

t1 s1 e1

t2 s2 e2

t3
s3 e3

δ = 4
gap = 2

hconflict = ∅
hcheck = [t2]

Fig. 2. Parts (A), (B) and (C) represent the earliest positions of the tasks and the
PCRCP at different values of δ. Part (A) is when δ = 0 just before the call of filter min
(Alg. 1 line 15). Part (B) is when δ = 1 just after the call of synchronize (Alg. 1 line
24). Part (C) is when δ = 4 just after the call of synchronize (line 24).

3.4 Correctness and Property Achieved by sweep min

We now prove that after the termination of sweep min(Alg. 1), Property 1 holds.
For this purpose, we first introduce the following lemma.

Lemma 1. At any point of its execution, sweep min(Alg. 1) cannot generate a
new compulsory part that is located before δ.

Proof. Since the start of the compulsory part of a task t corresponds to st, which
is indicated by its CCP or SCP event, and since sweep min only prunes earliest
starts, the compulsory part of t cannot start before this event. Consequently, the
latest value of δ to know whether the compulsory part of t is created is st. This
case is processed by Alg. 3, lines 12 to 17.

The end of the compulsory part of a task t corresponds to et and is indicated
by its ECPD event. To handle its potential extension to the right, the earliest
start of t must be found before the sweep extracts its ECPD event. This case is
processed by Alg. 3, lines 7 to 10. �	

Proof (of Property 1). Given a task t, let δt and mint respectively denote the
position of the sweep-line when the earliest start of t is adjusted by sweep min,
and the new earliest start of t. We successively show the following points:



A Scalable Sweep Algorithm for the cumulative Constraint 451

① When the sweep-line is located at instant δt we can start task t at mint

without exceeding limit , i.e.

∀t′ ∈ T \{t}, ∀i ∈ [mint, δt) : ht +
∑

t′∈T \{t}:
i∈[st′ ,et′ )

ht′ ≤ limit

The adjustment of the earliest start of task t to mint implies that t
is not in conflict on the interval [mint, δt) wrt. the PCRCP. Condition
get top key(hcheck) > gap (Alg. 2 line 5) ensures that the adjustment in
line 8 does not induce a resource overflow on [mint, δt), otherwise t should
have been added into hconflict . Condition get top key(hconflict ) ≤ gap (Alg. 2
line 13) implies that task t is in conflict until the current sweep-line position
δ. If δ ≥ st (line 15) the conflict on [st, δt) is not “real” since the compul-
sory part of t is already taken into account in the PCRCP. Alg. 2 (line 20),
the earliest start of task t is adjusted to the current sweep-line position,
consequently the interval [mint, δt) is empty.

② For each value of δ greater than δt, sweep min cannot create a compulsory
part before instant δt. This is implied by Lemma 1, which ensures that
sweep min cannot generate any compulsory part before δ.

Consequently once sweep min is completed, any task t can be fixed to its earliest
start without exceeding the resource limit limit . �	
Property 2. [Correctness.] For any task t, there is no feasible position before its
earliest start mint wrt. the PCRCP.

Proof. By contradiction. Given a task t, let omint be its earliest start before
the execution of sweep min. If the earliest start of t is pruned during the sweep,
i.e.mint > omint, then t is in conflict at a time point in the interval [omint,mint)
(see Alg. 2, line 11). Consequently condition δ − minst > dt (Alg. 2, line 7) is
false, which ensures that there is no earliest feasible position before mint. �	

3.5 Complexity

Given a cumulative constraint involving n tasks, the worst-case time complexity
of the dynamic sweep algorithm is O(n2 logn). First note that the overall worst-
case complexity of synchronize over a full sweep is O(n) since conditional and
dynamic events are updated at most once. The worst-case O(n2 logn) can be
reached in the special case when the PCRCP consists of a succession of high
peaks and deep, narrow valleys. Assume that one has O(n) peaks, O(n) valleys,
andO(n) tasks to switch between hcheck and hconflict each time. A heap operation
costs O(log n). The resulting worst-case time complexity is O(n2 logn).3 For bin-
packing, the two heaps hconflict and hcheck permit to reduce the worst-case time
complexity down to O(n log n). Indeed, the earliest start of the tasks of duration
one that exit hconflict can directly be adjusted (i.e. hcheck is unused).

3 Note that when the two heaps are replaced by a list where for each active task we
record its status (in checking mode or in conflict mode), we get an O(n2) worst-case
time complexity which, like the 2001 algorithm, is reached in practice.



452 A. Letort, N. Beldiceanu, and M. Carlsson

3.6 Greedy Mode

The motivation for a greedy assignment mode is to handle larger instances in
a CP solver. This propagation mode reuses the sweep min part of the filtering
algorithm in the sense that once the minimum value of a start variable is found,
the greedy mode directly fixes the start to its earliest feasible value wrt. Prop-
erty 1 rather than adjusting it. Then, the sweep-line is reset to this start and the
process continues until all tasks get fixed or a resource overflow occurs. Thus the
greedy mode directly benefits from the propagation performed while sweeping.

4 Evaluation

We implemented the dynamic sweep algorithm on Choco [19] and SICStus [5].
Benchmarks were run with an Intel i7 at 2.93 GHz processor on one single core,
memory limited to 13GB under Mac OS X 64 bits.

In a first experiment, we ran random instances of cumulative and bin-packing
problems. Instances were randomly generated with a density close to 0.7. For
a given number of tasks, we generated two different instances with the average
number of tasks overlapping a time point equal to 10 (denoted by ttu1 ) resp.
100 (denoted by ttu2 ). For cumulative problems, we compared the time needed
to find a first solution using fail-first search with the 2001 sweep algorithm
(denoted by sweep), the dynamic sweep (denoted by dynamic) and the greedy
mode (denoted by greedy). For bin-packing problems, we also tested a dedicated
filtering algorithm (denoted by fastbp) coming from Entropy [7], an open-source
autonomous virtual machine manager. The Choco results are shown in Fig. 3 (top
and middle). The SICStus results (omitted) paint a similar picture. We notice a
significant difference from the 2001 algorithm due to an inappropriate design of
the code for large instances in Choco (iterating over objects). SICStus is up to 8
times faster than Choco on sweep and twice as fast on dynamic and greedy. The
dynamic sweep is always faster than the 2001 sweep with a speedup increasing
with the number of tasks (e.g., for 8000 tasks up to 7 times in Choco and 5 times
in SICStus). The dynamic sweep algorithm is also more robust than the 2001
algorithm wrt. different heuristics. For the bin-packing case (ttu2), greedy could
handle up to 10 million tasks in one cumulative constraint in SICStus in 8h20m.

In a second experiment, we ran the J30 single-mode resource-constrained
project scheduling benchmark suite from PSPLib 4, comparing sweep with dy-
namic. Each instance involves four cumulative constraints on 30 tasks and several
precedence constraints. The variable with the smallest minimal value was chosen
during search. The SICStus results are shown in Fig. 3 (bottom). The left hand
scatter plot compares run times for instances that were solved to within 5%
of the optimal makespan within a 1 minute time-out by both algorithms. The
right hand scatter plot compares backtrack counts for instances that timed out
in at least one of the two algorithms. Search trees are the same for sweep and
dynamic, and a higher backtrack count means that propagation is faster, and so

4 http://129.187.106.231/psplib/, (480 instances)



A Scalable Sweep Algorithm for the cumulative Constraint 453

Fig. 3. Runtimes on random instances (top and middle). Comparing runtimes and
backtrack counts on PSPLib instances (bottom).

both plots confirm the finding that the dynamic sweep outperforms the 2001 one
by a factor up to 3, and not just for problems stated with a single constraint.

5 Conclusion

We have presented a new sweep based filtering algorithm, which dynamically
handles deductions while sweeping. In filtering mode, the new algorithm is up
to 8 times faster than the 2001 implementation. In assignment mode, it allows
to handle up to 1 million tasks in both Choco and SICStus. Future work will
focus on the adaptation of this algorithm to multiple resources.

Acknowledgments. Thanks to S. Demassey for providing the fastbp constraint.



454 A. Letort, N. Beldiceanu, and M. Carlsson

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling
and placement problems. Mathl. Comput. Modelling 17(7), 57–73 (1993)

2. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A Generic Geomet-
rical Constraint Kernel in Space and Time for Handling Polymorphic k-Dimensional
Objects. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180–194. Springer,
Heidelberg (2007)

3. Beldiceanu, N., Carlsson, M.: A New Multi-resource cumulatives Constraint with
Negative Heights. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp.
63–79. Springer, Heidelberg (2002)

4. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
geometry - algorithms and Applications. Springer (1997)

5. Carlsson, M., et al.: SICStus Prolog User’s Manual. SICS, 4.2.1 edn. (2012),
http://www.sics.se/sicstus

6. Freuder, E., Lee, J., O’Sullivan, B., Pesant, G., Rossi, F., Sellman, M., Walsh, T.:
The future of CP. Personal communication (2011)

7. Hermenier, F., Demassey, S., Lorca, X.: Bin Repacking Scheduling in Virtualized
Datacenters. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 27–41. Springer,
Heidelberg (2011)

8. Hermenier, F., Lorca, X., Menaud, J.M., Muller, G., Lawall, J.: Entropy: a consol-
idation manager for clusters. In: VEE 2009, pp. 41–50. ACM (2009)

9. Kameugne, R., Fotso, L.P., Scott, J., Ngo-Kateu, Y.: A Quadratic Edge-Finding
Filtering Algorithm for Cumulative Resource Constraints. In: Lee, J. (ed.) CP
2011. LNCS, vol. 6876, pp. 478–492. Springer, Heidelberg (2011)

10. O’Sullivan, B.: CP panel position - the future of CP. Personal communication (2011)
11. Pape, C.L.: Des systèmes d’ordonnacement flexibles et opportunistes. Ph.D. thesis,

Université Paris IX (1988) (in French)
12. Régin, J.C., Rezgui, M.: Discussion about constraint programming bin packing

models. In: AI for Data Center Management and Cloud Computing. AAAI (2011)
13. ROADEF: Challenge 2012 machine reassignment (2012),

http://challenge.roadef.org/2012/en/index.php
14. Schaus, P., Deville, Y.: A global constraint for bin-packing with precedences: appli-

cation to the assembly line balancing problem. In: AAAI 2008, pp. 369–374. AAAI
Press (2008)

15. Schulte, C.: Comparing trailing and copying for constraint programming. In: Schr-
eye, D.D. (ed.) ICLP 1999, pp. 275–289. The MIT Press (1999)

16. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Why Cumulative Decomposi-
tion Is Not as Bad as It Sounds. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732,
pp. 746–761. Springer, Heidelberg (2009)

17. Shaw, P.: Using Constraint Programming and Local Search Methods to Solve Ve-
hicle Routing Problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS,
vol. 1520, pp. 417–431. Springer, Heidelberg (1998)

18. Shaw, P.: A Constraint for Bin Packing. In: Wallace, M. (ed.) CP 2004. LNCS,
vol. 3258, pp. 648–662. Springer, Heidelberg (2004)

19. Team, C.: Choco: an open source Java CP library. Research report 10-02-INFO,
Ecole des Mines de Nantes (2010), http://choco.emn.fr/

20. Viĺım, P.: Edge Finding Filtering Algorithm for Discrete Cumulative Resources in
O(kn log n). In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 802–816. Springer,
Heidelberg (2009)

21. Viĺım, P.: Timetable Edge Finding Filtering Algorithm for Discrete Cumulative
Resources. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697,
pp. 230–245. Springer, Heidelberg (2011)

http://www.sics.se/sicstus
http://challenge.roadef.org/2012/en/index.php
http://choco.emn.fr/

	A Scalable Sweep Algorithm  for the cumulative Constraint
	Introduction
	A Critical Analysis of the 2001 Sweep Algorithm
	The Dynamic Sweep Algorithm
	Event Point Series
	Sweep-Line Status
	Algorithm
	Correctness and Property Achieved by sweep_min
	Complexity
	Greedy Mode

	Evaluation
	Conclusion
	References




