
Reasoning with Conditional Time-intervals

Philippe Laborie and Jérôme Rogerie
ILOG

9 rue de Verdun
94253 Gentilly Cedex, France

Abstract

Reasoning with conditional time-intervals representing
activities or tasks that may or may not be executed in
the final schedule is crucial in many scheduling applica-
tions. In Constraint-Based Scheduling, those problems
are usually handled by defining new global constraints
over classical integer variables. The approach described
in this paper takes a different perspective by introducing
a new type of variable (namely a time-interval variable)
that intrinsically embeds the notion of conditionality.
This dual perspective facilitates the modelling process
while ensuring a strong constraint propagation and an
efficient search in the engine. The approach forms the
foundations of the new generation of scheduling model
and algorithms provided in ILOG CP Optimizer.

Introduction
Many scheduling problems involve reasoning about activ-
ities or processes that may or may not be executed in the
final schedule, the choice of executing or not a process be-
ing a decision variable of the problem. This is particularly
true as scheduling is evolving in the direction of AI Planning
whose core problem is precisely the selection of the set of
activities to be executed. Indeed, most industrial scheduling
applications present at least some of the following features:
• optional activities (operations, tasks) that can be left un-

performed (with an impact on the cost) : typical examples
are externalized, maintenance or control tasks,

• activities that can execute on a set of alternative resources
(machines, manpower) with possibly different character-
istics (speed, calendar) and compatibility constraints,

• set of operations that can be processed in different tempo-
ral modes (for instance in series or in parallel),

• alternative modes for executing a given activity, each
mode specifying a particular combination of resources,

• alternative processes for executing a given production or-
der, a process being specified as a sequence of operations
requiring resources,

• hierarchical description of a project as a work-breakdown
structure with tasks decomposed into sub-tasks, part of

Copyright c� 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the project being optional (with an impact on the cost if
unperformed), etc.
Modelling and solving these types of problems is an ac-

tive topic in Constraint-Based Scheduling. Most of the
current approaches are based on defining additional deci-
sion variables that represent the existence of an activity
in the schedule or the index variable of the alternative re-
source/mode allocated to an activity and proposing new
global constraints and associated propagation algorithms:
XorNode, PEX in (Beck & Fox 1999), DTP

FD

in (Moffitt,
Peintner, & Pollack 2005), P/A Graphs in (Barták & Čepek
2007), alternative resource constraints in (ILOG 1997) and
(Nuijten et al. 2004).

In this paper, we introduce a different approach based on
the idea that optional activities should be considered as first
class citizen variables in the representation (we call them
time-interval variables) and that the engine is extended to
handle this new type of decision variable. Roughly speak-
ing, it is the dual view compared with existing approaches:
instead of defining new constraints over classical integer
variables to handle optional activities, we introduce them as
new variables in the engine. As we will see in the sequel of
this paper, doing this offers several advantages:
• modelling is easy because the notion of optionality is

intrinsic to the concept of time-interval variable: there
is no need for additional variables and complex meta-
constraints,

• the model is very expressive and separates the temporal
aspects from the logical ones,

• constraint propagation is strong because the conditional
domain maintained in time-interval variables naturally al-
lows conjunctive reasoning between constraints,

• constraints in Constraint-Based Scheduling can be ex-
tended to efficiently propagate on time-interval variables
without impacting their algorithmic complexity.
This paper focuses on the notion of time-interval variable

and on the basic temporal and logical constraints between
them. This framework forms the foundations of the new
generation of scheduling model and algorithms embedded
in CP Optimizer (ILOG 2008). Additional constraints are
provided in CP Optimizer for modelling calendars and re-
sources. Search methods, such as the approach presented

Proceedings of the Twenty-First International FLAIRS Conference (2008)

555

in (Laborie & Godard 2007) have been extended to han-
dle time-interval variables. These extensions are out of the
scope of the present paper.

Conditional Time-interval Model
Time-interval Variables
A time-interval variable a is a variable whose domain
dom(a) is a subset of {?} [{[s, e)|s, e 2 Z, s e}. A
time-interval variable is said to be fixed if its domain is re-
duced to a singleton, i.e., if a denotes a fixed time-interval:
• time-interval is non-executed: a = ?; or
• time-interval is executed: a = [s, e)

Non-executed time-interval variables have special mean-
ing. Informally speaking, a non-executed time-interval vari-
able is not considered by any constraint or expression on
time-interval variables it is involved in. For example, if
a non-executed time-interval variable a is used in a prece-
dence constraint between time-interval variables a and b
this constraint does not impact time-interval variable b.
Each constraint specifies how it handles non-executed time-
interval variables.

The semantics of constraints defined over time-interval
variables is described by the properties that fixed time-
intervals must have in order the constraint to be true. If a
fixed time-interval a is executed and such that a = [s, e),
we will denote s(a) = s its integer start date, e(a) = e its
integer end date and d(a) = d its non-negative integer du-
ration. The execution status x(a) will be equal to 1. For a
fixed time-interval that is non-executed, x(a) = 0 and the
start, end and duration are meaningless.

Logical Constraints
Execution status of time-interval variables can be further re-
stricted by logical constraints. The execution constraint
exec(a) states that a given time-interval variable must be ex-
ecuted. The semantics of the execution constraint on a fixed
time-interval a is:

exec(a)

d$
�
x(a) = 1

�

In the basic model described in this paper, we only con-
sider unary and binary logical constraints between execu-
tion statuses, that is, constraints of the form of 2-SAT
clauses over execution statuses: [¬] exec(a) or [¬] exec(a)_
[¬] exec(b). For example if a and b are two conditional time-
intervals such that when time-interval a is executed then b
must be executed too, it can be modelled by the constraint
¬ exec(a) _ exec(b).

Temporal Constraints
The temporal constraint network consists of a Simple Tem-
poral Network (STN) extended to the execution statuses. For
instance, a temporal relation endBeforeStart(a, b) states
that if both time-intervals a and b are executed then the end
of a must occur before the start of b.

The semantics of the relation TC(a, b, z) on a pair of fixed
time-intervals a, b and for a delay value z depending on the
temporal relation type TC is given on Table 1.

Relation Semantics
startBeforeStart x(a) ^ x(b)) s(a) + z s(b)
startBeforeEnd x(a) ^ x(b)) s(a) + z e(b)
endBeforeStart x(a) ^ x(b)) e(a) + z s(b)
endBeforeEnd x(a) ^ x(b)) e(a) + z e(b)
startAtStart x(a) ^ x(b)) s(a) + z = s(b)
startAtEnd x(a) ^ x(b)) s(a) + z = e(b)
endAtStart x(a) ^ x(b)) e(a) + z = s(b)
endAtEnd x(a) ^ x(b)) e(a) + z = e(b)

Table 1: Temporal constraints semantics

Note that in general, the delay z specified in a tempo-
ral constraint can be a variable of the problem rather than a
fixed value. For simplicity, we assume in this paper that it is
always a fixed value.

Hybrid N-ary Constraints
This section describes two constraints over a group of time-
intervals. Both constraints are hybrid in the sense that they
combine logical and temporal aspects. They allow a hierar-
chical definition of the model by encapsulating a group of
time-intervals into one high-level time-interval. Here is an
informal definition of these constraints:
• Span constraint. The constraint span(a0, {a1, ..., an

})
states that, if time-interval a0 is executed, it spans over
all executed time-intervals from the set {a1, .., an

}. That
is, time-interval a0 starts together with the first executed
time-interval from {a1, .., an

} and ends together with the
last one. Time-interval a0 is not executed if and only if
none of time-intervals {a1, .., an

} is executed.
• Alternative constraint. The constraint

alternative(a0, {a1, .., an

}) models an exclusive al-
ternative between {a1, .., an

}. If time-interval a0 is
executed then exactly one of time-intervals {a1, .., an

} is
executed and a0 starts and ends together with this chosen
one. Time-interval a0 is not executed if and only if none
of time-intervals {a1, .., an

} is executed.
More formally, let a0, a1, ..., an

be a set of fixed time-
interval variables.

The span constraint span(a0, {a1, ..., an

}) holds if and
only if:

¬x(a0) , 8i 2 [1, n],¬x(a
i

)

x(a0) ,

8
<

:

9i 2 [1, n], x(a
i

)

s(a0) = min

i2[1,n],x(ai) s(a
i

)

e(a0) = max

i2[1,n],x(ai) e(a
i

)

The alternative time-intervals constraint
alternative(a0, {a1, ..., an

}) holds if and only if:

¬x(a0) , 8i 2 [1, n],¬x(a
i

)

x(a0) , 9k 2 [1, n]

8
><

>:

x(a
k

)

s(a0) = s(a
k

)

e(a0) = e(a
k

)

8j 6= k,¬x(a
j

)

556

Complexity
Although both the logical constraint network (2-SAT) and
the temporal constraint network (STN) are polynomially
solvable frameworks, finding a solution to the basic model
described above that combines the two frameworks is NP-
Complete (even without alternative and span constraints).
The proof is a direct consequence of the fact the model al-
lows the expression of the temporal disjunction between two
time-intervals a and b. Indeed, such a temporal disjunc-
tion can be modelled using 4 additional conditional time-
intervals a1, a2, b1 and b2 with the following constraint set:

exec(a); exec(b);

startAtStart(a, a1); startAtStart(a, a2);

startAtStart(b, b1); startAtStart(b, b2);

endAtEnd(a, a1); endAtEnd(a, a2);

endAtEnd(b, b1); endAtEnd(b, b2);

endBeforeStart(a1, b1); endBeforeStart(b2, a2);

¬ exec(a1) _ ¬ exec(a2); exec(a1) _ exec(a2);

¬ exec(b1) _ ¬ exec(b2); exec(b1) _ exec(b2);

¬ exec(a1) _ exec(b1); exec(a1) _ ¬ exec(b1);

Graphical Conventions and Examples
The following sections illustrate some examples of models.
We are using the following graphical conventions:
• Time-interval variables are represented by a box. When

necessary, the time-interval duration is specified inside
the box. A dotted box represents an optional time-interval
variable.

• Temporal constraints are represented by plain arrows. De-
pending on the type of temporal constraint, the end-points
of the arrow are connected with the appropriate time-
points of the time-interval variables.

• Logical constraint are represented by dotted arrows and
denote an implication relation (for instance exec(a))
exec(b)). In case the arrow starts or ends at a cross, the
corresponding end-point of the implication is the negation
of the execution status.

• Span constraints are represented by a box (the spanning
time-interval variable) containing the set of spanned time-
interval variables.

• Alternative constraints are represented by a multi-edge la-
belled by XOR.

Alternative Modes with Compatibility Constraints
Suppose an activity a can be executed in n possible modes
{a

i

}
i2[1,n] with duration da

i

for mode a
i

and an activ-
ity b can be executed in m possible modes {b

j

}
j2[1,m]

with duration db
j

for mode b
j

. Furthermore, there are
some mode incompatibility constraints (i, j) specifying that
mode a

i

for a is incompatible with mode b
j

for b. This
model is represented on Figure 1, incompatibilities (i, j)
are modelled by implications exec(a

i

)) ¬ exec(b
j

) (that
is: ¬ exec(a

i

) _ ¬ exec(b
j

)). Of course, in practical appli-
cations, time-interval variables a

i

and b
j

will require some
conjunction of resources but, as mentioned in the introduc-
tion, this is out of the scope of the present paper. If binary

logical constraints are insufficient to model the compatibil-
ity rules, the execution status of time-intervals exec(a

i

) can
also be used in standard constraint programming constructs
such as n-ary logical or arithmetic expressions or table con-
straints (Bessière & Régin 1997).

Figure 1: A model for alternative modes

Series/Parallel Alternative
Figure 2 depicts a model where a job is composed of two
operations a and b that can be executed either in series or
in parallel (in this case, both operations are constrained to
start at the same date). This is modelled by two alterna-
tives alternative(a, {a1, a2}) and alternative(b, {b1, b2})
with (a1, b1) describing the serial and (a2, b2) describing the
parallel execution. Logical constraints exec(a

i

), exec(b
i

)

are added to ensure a consistent selection of the alternative.

Figure 2: A model for a series/parallel alternative

A similar pattern can be used for any disjunction of a com-
bination of temporal constraints on a pair of time interval
variables.

Alternative Recipes
Figure 3 describes a set of 3 alternative recipes. The global
process a is modelled as an alternative of the 3 recipes r1,
r2 and r3. Each recipe is a time-interval variable that spans
the internal operations of the recipe. Implication constraints
between a recipe and some of its internal operations (for in-
stance exec(r3)) exec(o31)) mean that operation is not
optional in the recipe. Note that the opposite implications
(for instance exec(o31)) exec(r3)) are part of the span
constraint. This pattern can be extended to a hierarchy
of spanning tasks for modelling complex work-breakdown
structures in project scheduling.

Temporal Disjunction
The graphical representation of the model for temporal
disjunction which shows that the basic framework is NP-
Complete is depicted on Figure 4.

557

Figure 3: A model for alternative recipes

Figure 4: A model for temporal disjunction

Constraint Propagation
Time-interval Variables
The domain of a time-interval variable a is represented by a
tuple of ranges ([x

min

, x
max

], [s
min

, s
max

], [e
min

, e
max

],
[d

min

, d
max

]). [x
min

, x
max

] ✓ [0, 1] represents the domain
of the execution status of a. x

min

= x
max

= 1 means that
a will be executed whereas x

min

= x
max

= 0 means that it
will not be. [s

min

, s
max

] ✓ Z represents the conditional do-
main of the start time of a, that is, the minimal and maximal
start time would a be executed. Similarly, [d

min

, d
max

] ✓ Z
and [e

min

, e
max

] ✓ Z respectively denote the conditional
domain of the duration and end time of a.

The time-interval variable maintains the internal con-
sistency between the temporal bounds [s

min

, s
max

],
[e

min

, e
max

] and [d
min

, d
max

] that are due to the relation
d = e � s. When the temporal bounds become incon-
sistent (for instance because s

min

> s
max

or because
e
min

� s
max

> d
max

), the time-interval execution status
is automatically set to false (x

max

= 0). Of course, if exe-
cution status of the time-interval is already true (x

min

= 1),
this will trigger a failure. Just like other classical variables
in CSPs:

• The domain of time-interval variables can be ac-
cessed thanks to accessors: is[True|False],
get[Start|End|Duration][Min|Max]

• It can be modified thanks to modifiers: set[True|False],
set[Start|End|Duration][Min|Max] ,

• Events can be attached to the change of the do-
main so as to trigger constraint propagation. In
this context, accessors are also available to access
the previous value of the domain which is use-
ful for implementing efficient incremental constraints:
getOld[Start|End|Duration][Min|Max].

The following sections describe how logical, temporal
and hybrid n-ary constraints are handled by the engine.

Logical Network
All 2-SAT logical constraints between time-interval execu-
tion statuses of the form [¬] exec(a)_ [¬] exec(b) are aggre-
gated in a logical network similar to the implication graph
described in (Brafman 2001). The objectives of the logical
network are:
• The detection of inconsistencies in logical constraints.
• An O(1) access to the logical relation that can be inferred

between any two time-intervals (a, b).
• A traversal of the set of time-intervals whose execution is

implied by (resp. implies) the execution of a given time-
interval variable a.

• The triggering of some events as soon as a new implica-
tion relation is inferred between two time-intervals (a, b)
in order to wake up constraint propagation.
The above services are incrementally ensured when new

logical constraints are added to the network or when the ex-
ecution status of a time-interval is fixed. They are used by
the propagation, as for instance in the temporal network pre-
sented in next section, and by the search algorithms.

Nodes {l
i

}
i2[1,n] in the graph correspond to execution

statuses exec(a) or their negation ¬ exec(a) and an arc
l
i

! l
j

corresponds to an implication relation between
the corresponding boolean statuses. For instance a con-
straint exec(a) _ exec(b) would be associated with an arc
¬ exec(a) ! exec(b). As links l

i

! l
j

and ¬l
j

! ¬l
i

are
equivalent, for each time-interval variable a, only one node
has to be considered in the network, either the one corre-
sponding to exec(a) or the one corresponding to ¬ exec(a).
Fixed execution statuses are skipped from the network as in
this case binary constraints are reduced to unary constraints.
Strongly connected components of the implication graph are
collapsed into a single node representing the logical equiva-
lence class and the transitive closure of the resulting directed
acyclic graph is maintained as new arcs are added. The log-
ical network becomes inconsistent when it allows to infer
both relations l

i

! ¬l
i

and ¬l
i

! l
i

.
The time and memory complexity of the logical network

for performing the transitive closure is quadratic with the
length of the implication graph. In usual scheduling prob-
lems, this length tends to be small compared with the num-
ber of time-interval variables. Typically, this length is re-
lated with the depth of the work-breakdown structure.

Temporal Network
Temporal constraints [start|end][Before|At][Start|End] are
aggregated in a temporal network whose nodes {p

i

}
i2[1,n]

represent the set of time-interval start and end points. If p
i

is a time-point in the network, we denote x(p
i

) the (vari-
able) boolean execution status of the time-interval variable
of p

i

and t(p
i

) the (variable) date of the time-point. An arc
(p

i

, p
j

, z
ij

) in the network denotes a minimal delay z
ij

be-
tween the two time-points p

i

and p
j

would both time-points
be executed, that is: x(p

i

)^ x(p
j

)) (t(p
i

) + z
ij

 t(p
j

)).

558

It is easy to see that all temporal constraints can be repre-
sented by one or two arcs in the temporal network. Further-
more, the duration of the time-interval is also represented
by two arcs, one between the start and the end time-point
labelled with the minimal duration and the other between
the end and the start time-point labelled by the opposite of
the maximal duration. Let t

min

(p
i

) and t
max

(p
i

) denote
the current conditional bounds on the date of time-point p

i

.
Depending on whether p

i

denotes the start or the end of a
time-interval variable, these bounds are the s

min

, s
max

or
the e

min

, e
max

values stored in the current domain of the
time-interval variable of p

i

.
The main idea of the propagation of the temporal net-

work is that for a given arc (p
i

, p
j

, z
ij

), whenever the logical
network can infer the relation x(p

i

)) x(p
j

) the propaga-
tion on the conditional bounds of p

i

(time-bounds would p
i

be executed) can assume that p
j

will also be executed and
thus the arc can propagate the conditional bounds from time-
point p

j

on p
i

: t
max

(p
i

) min(t
max

(p
i

), t
max

(p
j

)�z
ij

).
Similarly, if the relation x(p

j

)) x(p
i

) can be inferred
by the logical network then the other half of the propa-
gation that propagates on time-point p

j

can be performed:
t
min

(p
j

) max(t
min

(p
j

), t
min

(p
i

) + z
ij

). This obser-
vation is crucial: it allows to propagate on the conditional
bounds of time-points even when their execution status is
not fixed. Of course, when the execution status of a time-
point p

i

is fixed to 1, all other time-points p
j

are such that
x(p

j

)) x(p
i

) and thus, the bounds of p
i

can be propagated
on all the other time-points. When all time-points are surely
executed, this propagation boils down to the classical bound-
consistency on STNs. When the two time-points of an arc
have equivalent execution status, the arc can be propagated
in both directions, this is in particular the case for arcs corre-
sponding to time-interval durations. When the time-bounds
of the extremities of an arc (p

i

, p
j

, z
ij

) become inconsistent,
the logical constraint x(p

i

)) ¬x(p
j

) can be added to the
logical network.

Figure 5 depicts the problem described in (Barták &
Čepek 2007) modelled in our framework. If the deadline
for finishing the schedule is 70, the propagation will in-
fer that the alternative BuyTube cannot be executed as
there is not enough space between the minimal start time
of GetTube (1) and its maximal end time (50) to accommo-
date its duration of 50. Note that if the duration of operation
BuyTube was lower than 49 but if the sum of the dura-
tions of operations SawTube and ClearTube was greater
than 49, then the propagation would infer that the alterna-
tive SawTube ! ClearTube is impossible because these
two operations have equivalent execution status and thus, the
precedence arc between them can propagate in both direc-
tions.

Figure 6 illustrates another example of propagation. The
model consists of a chain of n identical optional opera-
tions {o

i

}
i2[1,n] of duration 10 that, if executed, need to be

executed before date 25 and are such that exec(o
i+1))

exec(o
i

). Although initially, all operations are optional, the
propagation will infer that only the first two operations can
be executed and will compute the exact conditional minimal
start and end times for the two possibly executed operations.

Figure 5: Example of propagation

We are not aware of any other framework that is capable of
inferring, by constraint propagation only, such type of infor-
mation on purely optional activities.

Figure 6: Example of propagation

Most of the classical algorithms for propagating on STNs
can be extended to handle conditional time-points. In CP
Optimizer, the initial propagation of the temporal network
is performed by an improved version of the Bellman-Ford
algorithm presented in (Cherkassky, Goldberg, & Radzic
1996) and the incremental propagation when a time-bound
has changed or when a new arc or a new implication relation
is detected is performed by an extension of the algorithm
for positive cycles detection proposed in (Cesta & Oddi
1996). The main difference with the original algorithms is
that propagation of the temporal bounds is performed only
following those arcs that are allowed to propagate on their
target given the implication relations. This propagation al-
lows for instance to infer that a set of optional time-intervals
with equivalent status forming a positive cycle in the tempo-
ral network cannot be executed.

Hybrid N-ary Constraints
The propagation of both the span and alternative constraints
follow the same pattern. First, the part of the propagation
that can be delegated to the logical and temporal networks is
transferred to them:

• In the case of a span constraint span(a0, {a1, ..., an

}),
the set of implications exec(a

i

)) exec(a0) are
treated by the logical network and the set of arcs
startBeforeStart(a0, ai

) and endBeforeEnd(a
i

, a0) by
the temporal network.

559

• In the case of an alternative constraint
alternative(a0, {a1, ..., an

}), the set of implications
exec(a

i

)) exec(a0) are treated by the logical net-
work and the set of arcs startAtStart(a0, ai

) and
endAtEnd(a

i

, a0) by the temporal network.
The rest of the propagation is performed by the specific

constraints themselves:
• The span constraint propagates the fact that when a0 is ex-

ecuted, there must exist at least one executed time-interval
variable a

i

that starts at the same date as the start of a0

(and the symmetrical relation for the end).
• The alternative constraint propagates the fact that no

two time-interval variables a
i

and a
j

can simultaneously
execute and maintains the conditional temporal bounds
of time-interval variable a0 as the constructive disjunc-
tion of the conditional temporal bounds of possibly ex-
ecuted time-interval variables a

i

. Propagation events on
time-interval variables allow writing efficient incremental
propagation for the alternative constraint.

Conclusion and Future Work
This paper presents a framework for reasoning about con-
ditional time-intervals that serves as the foundation of the
new generation of scheduling model and algorithms in CP
Optimizer. It introduces the notion of conditional time-
interval variables as first-class citizen decision variables
in the constraint programming language and engine. This
new type of variable allows easily writing expressive mod-
els for scheduling applications involving conditional activ-
ities while ensuring a strong constraint propagation and an
efficient search in the engine. This framework can also be
used in AI temporal planning to strengthen the propagation
in approaches such as the one proposed in (Vidal & Geffner
2006).

The basic model introduced in this paper has been com-
plemented in CP Optimizer with a set of useful global con-
straints for scheduling problems including time-interval se-
quencing (unary resources), cumulative (discrete resources,
reservoirs) and state reasoning (state resources) as well
as with numerical expressions to use time-interval bounds
(start, end, duration, execution status) in classical CSP con-
straints. The classical global constraint propagation algo-
rithms for scheduling (timetabling, disjunctive constraint,
edge-finding, etc.) have been adapted to handle the exe-
cution status of time-interval variables. See for instance
(Vilı́m, Barták, & Čepek 2005) for edge-finding.

As illustrated on Figure 7, coupling global constraints
with logical and temporal network information allows per-
forming stronger conjunctive deductions on the bounds of
time-interval variables and inferring new logical and tempo-
ral relations.

The search method described in (Laborie & Godard 2007)
has been extended to handle time-interval variables. It con-
sists of a tree search for producing an initial solution fol-
lowed by a self-adapting iterative improvement method. Be-
side constraint propagation, the logical and temporal net-
works described in this paper, which are linear structures
that convey important information about the structure of the

Figure 7: General approach for propagation

problem, are also used to compute relaxations to guide tree
search and to define the moves of the iterative method. Fu-
ture work will consist in enhancing constraint propagation
and search following this general pattern.

References
Barták, R., and Čepek, O. 2007. Temporal networks with
alternatives: Complexity and model. In Proc. FLAIRS-
2007.
Beck, J. C., and Fox, M. S. 1999. Scheduling alternative
activities. In Proc. AAAI-99.
Bessière, C., and Régin, J.-C. 1997. Arc consistency for
general constraint networks: preliminary results. In Proc.
IJCAI’97, 398–404.
Brafman, R. I. 2001. A simplifier for propositional formu-
las with many binary clauses. In Proc. IJCAI-01, 515–522.
Cesta, A., and Oddi, A. 1996. Gaining efficiency and flex-
ibility in the simple temporal problem. In Proc. TIME-96.
Cherkassky, B.; Goldberg, A.; and Radzic, T. 1996. Short-
est paths algorithms: Theory and experimental evaluation.
Mathematical Programming 73:129–174.
ILOG. 1997. ILOG Scheduler 4.0 Reference Manual.
ILOG. 2008. ILOG CP Optimizer. Webpage:
http://www.ilog.com/products/cpoptimizer/.
Laborie, P., and Godard, D. 2007. Self-adapting large
neighborhood search: Application to single-mode schedul-
ing problems. In Proc. MISTA-07.
Moffitt, M. D.; Peintner, B.; and Pollack, M. E. 2005. Aug-
menting disjunctive temporal problems with finite-domain
constraints. In Proc. AAAI-2005.
Nuijten, W.; Bousonville, T.; Focacci, F.; Godard, D.; and
Le Pape, C. 2004. Towards an industrial manufacturing
scheduling problem and test bed. In Proc. PMS-2004, 162–
165.
Vidal, V., and Geffner, H. 2006. Branching and Pruning:
An Optimal Temporal POCL Planner based on Constraint
Programming. Artificial Intelligence 170:298–335.
Vilı́m, P.; Barták, R.; and Čepek, O. 2005. Extension of o(n
log n) filtering algorithms for the unary resource constraint
to optional activities. Constraints 10:403–425.

560

