
IBM ILOG CP Optimizer
for Detailed Scheduling

Illustrated on Three Problems

Philippe Laborie

ILOG an IBM company,
9, rue de Verdun, 94253 Gentilly Cedex, France

laborie@fr.ibm.com

Abstract. Since version 2.0, IBM ILOG CP Optimizer provides a new
scheduling language supported by a robust and efficient automatic search.
This paper illustrates both the expressivity of the modelling language and
the robustness of the automatic search on three problems recently studied
in the scheduling literature. We show that all three problems can easily be
modelled with CP Optimizer in only a few dozen lines (the complete mod-
els are provided) and that on average the automatic search outperforms
existing problem specific approaches.

Keywords: Constraint Programming, Scheduling.

1 Introduction

Since version 2.0, IBM ILOG CP Optimizer provides a new scheduling lan-
guage supported by a robust and efficient automatic search. This new-generation
scheduling model is based on ILOG’s experience in applying Constraint-Based
Scheduling to industrial applications. It was designed with the following require-
ments in mind [1,2]:

– It should be accessible to software engineers and to people used to mathe-
matical programming;

– It should be simple, non-redundant and use a minimal number of concepts
so as to reduce the learning curve for new users;

– It should fit naturally into a CP paradigm with clearly identified variables,
expressions and constraints;

– It should be expressive enough to handle complex industrial scheduling ap-
plications, which often are over-constrained, involve optional activities, al-
ternative recipes, non-regular objective functions, etc.

– It should support a robust and efficient automatic search algorithm so that
the user can focus on the declarative model without necessity to write any
complex search algorithm (model-and-run development process).

The scheduling language is available in C++, Java, C# as well as in the OPL
Optimization Programming Language1. The automatic search is based on a
1 A trial version of OPL supporting this language can be downloaded on
http://www.ilog.com/products/oplstudio/trial.cfm

W.-J. van Hoeve and J.N. Hooker (Eds.): CPAIOR 2009, LNCS 5547, pp. 148–162, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.ilog.com/products/oplstudio/trial.cfm

IBM ILOG CP Optimizer for Detailed Scheduling 149

Self-Adapting Large Neighbourhood Search that iteratively unfreezes and re-
optimizes a selected fragment of the current solution. The search algorithm is
out of the scope of this paper, the principles of the approach have been described
in [3] whereas more details about constraint propagation are available in [1].

The present paper illustrates the new modelling language and the efficiency
and robustness of the automatic search on three problems recently studied in
the scheduling literature. These problems were selected for several reasons:

– They are quite different in nature, covering cumulative and disjunctive
scheduling, non-preemptive and preemptive scheduling, alternative modes,
structured and unstructured temporal networks, etc.;

– All three problems are optimization problems with realistic non-regular
objective functions (earliness/tardiness costs, number of executed tasks,
complex temporal preference functions);

– They cover a range of different application domains (manufacturing,
aerospace, project scheduling);

– Benchmarks and recent results are available to evaluate the efficiency of CP
Optimizer’s automatic search.

Section 2 recaps the modelling concepts of CP Optimizer used in the paper.
Sections 3 to 5 are dedicated to the three scheduling problems: a flow-shop
problem with earliness and tardiness costs [4], the oversubscribed scheduling
problem studied in [5] and the personal task scheduling problem introduced in
SelfPlanner [6]. Each of these sections starts with a description of the problem
followed by a problem formulation in OPL. We show that all problems are easily
modelled with CP Optimizer and that the resulting models are very concise
(ranging from 15 to 42 lines of code). These models are then solved using the
automatic search of CP Optimizer 2.1.1 with default parameter values on a 3GHz
Linux desktop. We show that, in spite of its generality, the default search of CP
Optimizer outperforms state-of-the-art approaches on all three problems.

2 CP Optimizer Model for Detailed Scheduling

This section recaps the conditional interval formalism introduced in [1,2]. It
extends classical constraint programming by introducing with parsimony addi-
tional mathematical concepts (such as intervals, sequences or functions) as new
variables or expressions to capture the temporal aspects of scheduling2. In this
section we focus on the modelling concepts that are sufficient to understand the
three models detailed in sections 3-5. A more formal and exhaustive description
of the CP Optimizer concepts for detailed scheduling as well as several examples
are provided in [7].

2 In the present paper, a few concepts have been renamed so as to be consistent
with their implementation in IBM ILOG CP Optimizer. In particular, we speak of
present/absent rather than executed/non-executed interval variable and the notion of
interval duration is replaced by the notion of interval length.

150 P. Laborie

2.1 Interval Variables

An interval variable a is a decision variable whose domain dom(a) is a subset
of {⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e}. An interval variable is said to be fixed if its
domain is reduced to a singleton, i.e., if a denotes a fixed interval variable then:

– either interval is absent: a = ⊥;
– or interval is present: a = [s, e). In this case, s and e are respectively the

start and end of the interval and l = e − s its length.

Absent interval variables have special meaning. Informally speaking, an absent
interval variable is not considered by any constraint or expression on interval
variables it is involved in. For example, if an absent interval variable a is used in
a precedence constraint between interval variables a and b then, this constraint
does not influence interval variable b. Each constraint and expression specifies
how it handles absent interval variables.

By default interval variables are supposed to be present but they can be spec-
ified as being optional meaning that ⊥ is part of the domain of the variable
and thus, it is a decision of the problem to have the interval present or absent
in the solution. Optional interval variables provide a powerful concept for effi-
ciently reasoning with optional or alternative activities. The following constraints
on interval variables are introduced to model the basic structure of scheduling
problems. Let a, ai and b denote interval variables and z an integer variable:

– A presence constraint presenceOf(a) states that interval a is present, that
is a �= ⊥. This constraint can be composed, for instance presenceOf(a) ⇒
presenceOf(b) means that the presence of a implies the presence of b.

– A precedence constraint (e.g. endBeforeStart(a, b, z)) specifies a prece-
dence between interval end-points with an integer or variable minimal dis-
tance z provided both intervals a and b are present.

– A span constraint span (a, {a1, ..., an}) states that if a is present, it starts
together with the first present interval in {a1, ..., an} and ends together with
the last one. Interval a is absent if and only if all the ai are absent.

– An alternative constraint alternative (a, {a1, ..., an}) models an exclusive
alternative between {a1, ..., an}: if interval a is present then exactly one of
intervals {a1, ..., an} is present and a starts and ends together with this
chosen one. Interval a is absent if and only if all the ai are absent.

These constraints make it easy to capture the structure of complex scheduling
problems (hierarchical description of the work-breakdown structure of a project,
representation of optional activities, alternative modes/recipes/processes, etc.)
in a well-defined CP paradigm.

Sometimes the intensity of “work” is not the same during the whole interval.
For example let’s consider a worker who does not work during weekends (his
work intensity during weekends is 0%) and on Friday he works only for half a
day (his intensity during Friday is 50%). For this worker, 7 man-days work will
last for longer than just 7 days. In this example 7 man-days represent what we
call the size of the interval: that is, the length of the interval would be if the
intensity function was always at 100%. In CP Optimizer, this notion is captured

IBM ILOG CP Optimizer for Detailed Scheduling 151

by an integer step function that describes the instantaneous intensity - ex-
pressed as a percentage - of a work over time. An interval variable is associated
with an intensity function and a size. The intensity function F specifies the
instantaneous ratio between size and length. If an interval variable a is present,
the intensity function enforces the following relation:

100× size(a) ≤
∫ end(a)

start(a)

F (t).dt < 100 × (size(a) + 1)

By default, the intensity function of an interval variable is a flat function equal
to 100%. In this case, the concepts of size and length are identical.

It may also be necessary to state that an interval cannot start, cannot end
at or cannot overlap a set of fixed dates. CP Optimizer provides the following
constraints for modelling it. Let a denote an interval variable and F an integer
stepwise function.

– Forbidden start constraint. Constraint forbidStart(a, F) states that
whenever interval a is present, it cannot start at a value t where F (t) = 0.

– Forbidden end constraint. Constraint forbidEnd(a, F) states that when-
ever interval a is present, it cannot end at a value t where F (t − 1) = 0.

– Forbidden extent constraint. Constraint forbidExtent(a, F) states that
whenever interval a is present, it cannot overlap a point t where F (t) = 0.

Integer expressions are provided to constrain the different components of an in-
terval variable (start, end, length, size). For instance the expression
startOf(a, dv) returns the start of interval variable a when a is present and
returns integer value dv if a is absent (by default if argument dv is omitted it
assumes dv = 0). Those expressions make it possible to mix interval variables
with more traditional integer constraints and expressions.

2.2 Sequence Variables

Many problems involve scheduling a set of activities on a disjunctive resource
that can only perform one activity at a time (typical examples are workers,
machines or vehicles). From the point of view of the resource, a solution is a
sequence of activities to be processed. Besides the fact that activities in the
sequence do not overlap in time, additional constraints such as resource setup
times or constraints on the relative position of activities in the sequence are
common. To capture this idea we introduce the notion of sequence variable, a
new type of decision variable whose value is a permutation of a set of interval
variables. Constraints on sequence variables are provided for ruling out illegal
permutations (sequencing constraints) or for stating a particular relation be-
tween the order of intervals in the permutation and the relative position of their
start and end values (no-overlap constraint).

A sequence variable p is defined on a set of interval variables A. A value of p
is a permutation of all present intervals of A. For instance, if A = {a, b} is a set of
two interval variables with a being necessarily present and b optional, the domain
of the sequence p defined on A consists of 3 permutations: {(a), (a, b), (b, a)}.

152 P. Laborie

If p denotes a sequence variable and a, b two interval variables in the sequence,
the sequencing constraints first(p, a) and last(p, a) respectively mean that if
interval a is present, it is the first or last in sequence p. Sequencing constraints
before(p, a, b) and prev(p, a, b) respectively mean that if both intervals a and b
are present, then a is before or immediately before b in sequence p.

It is to be noted that the sequencing constraints above do not have any im-
pact on the start and end values of intervals, they only constrain the possible
values (permutations) of the sequence variable. The no-overlap constraint
noOverlap(p) on a sequence variable p states that permutation p defines a chain
of non-overlapping intervals, any interval in the chain being constrained to end
before the start of the next interval in the permutation.

For modelling sequence dependent setup times, each interval variable a in a
sequence p can be associated with a non-negative integer type T (p, a) and the
no-overlap constraint can be associated with a transition distance. A transition
distance M is a function M : [0, n)× [0, n) → Z

+. If a and b are two successive
non-overlapping present intervals, the no-overlap constraint noOverlap(p, M)
will express a minimal distance M(T (p, a), T (p, b)) between the end of a and
the start of b.

2.3 Cumul Function Expressions

For cumulative resources, the cumulated usage of the resource by the activities
is a function of time. An activity usually increases the cumulated resource usage
function at its start time and decreases it when it releases the resource at its
end time. For resources that can be produced and consumed by activities (for
instance the content of an inventory or a tank), the resource level can also be
described as a function of time: production activities will increase the resource
level whereas consuming activities will decrease it. In these problem classes,
constraints are imposed on the evolution of these functions of time, for instance
a maximal capacity or a minimum safety level.

CP Optimizer introduces the notion of a cumul function expression which is
a constrained expression that represents the sum of individual contributions of
intervals. A set of elementary cumul functions is available to describe the indi-
vidual contribution of an interval variable (or a fixed interval of time or a fixed
date). These elementary functions cover the use-cases mentioned above: pulse for
usage of a cumulative resource, and step for resource production/consumption
(see Figure 1). It is important to note that the elementary cumul functions

u

pulse(u,v,h)

0
v

h

u

step(u,h)
h

pulse(a,h)

0

h

a

stepAtStart(a,h)

0

h

a

stepAtEnd(a,h)

0

h

a

Fig. 1. Elementary cumul function expressions

IBM ILOG CP Optimizer for Detailed Scheduling 153

defined on an interval variable are equal to the zero function when the interval
variable is absent.

A cumul function expression f is defined as the sum of a set of elementary
functions fi or their negations: f =

∑
i εi · fi where εi ∈ {−1, +1}. When the

elementary cumul functions fi that define a cumul function f are fixed (and
thus, so are their related intervals), the cumul function itself is fixed and its
value is a stepwise integer function. Several constraints are provided over cumul
functions. These constraints allow restricting the possible values of the function
over the complete horizon or over some fixed or variable interval. Let u, v ∈ Z,
h, hmin, hmax ∈ Z

+ and a denote an interval variable. The following constraints
are available on a cumul function f to restrict its possible values:

– alwaysIn(f, u, v, hmin, hmax) means that the values of function f must re-
main in the range [hmin, hmax] everywhere on the fixed interval [u, v).

– alwaysIn(f, a, hmin, hmax) means that if interval a is present, the values of
function f must remain in the range [hmin, hmax] between the start and the
end of interval variable a.

– f ≤ h: function f cannot take values greater than h.
– f ≥ h: function f cannot take values lower than h.

3 Flow-Shop with Earliness and Tardiness Costs

3.1 Problem Description

The first problem studied in the paper is a flow-shop scheduling problem with
earliness and tardiness costs on a set of instances provided by Morton and Pen-
tico [8] that have been used in a number of studies including GAs [9] and Large
Neighbourhood Search [4]. In this problem, a set of n jobs is to be executed
on a set of m machines. Each job i is a chain of exactly m operations, one per
machine. All jobs require the machines in the same order that is, the position
of an operation in the job determines the machine it will be executed on. Each
operation j of a job i is specified by an integer processing time pti,j . Opera-
tions cannot be interrupted and each machine can process only one operation at
a time. The objective function is to minimize the total earliness/tardiness cost.
Typically, this objective might arise in just-in-time inventory management: a late
job has negative consequence on customer satisfaction and time to market, while
an early job increases storage costs. Each job i is characterized by its release date
rdi, its due date ddi and its weight wi. The first operation of job i cannot start
before the release date rdi. Let Ci be the completion date of the last operation
of job i. The earliness/tardiness cost incurred by job i is wi ·abs(Ci−ddi). In the
instances of Morton and Pentico, the total earliness/tardiness cost is normalized
by the sum of operation processing times so the global cost to minimize is:

∑
i∈[1,n]

(
wi · abs(Ci − ddi)

)
W

where W =
∑

i∈[1,n]

(
wi ·

∑
j∈[1,m]

pti,j
)

154 P. Laborie

Model 1 - OPL Model for Flow-shop with Earliness and Tardiness Costs
1: using CP;
2: int n = ...;
3: int m = ...;
4: int rd[1..n] = ...;
5: int dd[1..n] = ...;
6: float w[1..n] = ...;
7: int pt[1..n][1..m] = ...;
8: float W = sum(i in 1..n) (w[i] * sum(j in 1..m) pt[i][j]);
9: dvar interval op[i in 1..n][j in 1..m] size pt[i][j];

10: dexpr int C[i in 1..n] = endOf(op[i][m]);
11: minimize sum(i in 1..n) w[i]*abs(C[i]-dd[i])/W;
12: subject to {
13: forall(i in 1..n) {
14: rd[i] <= startOf(op[i][1]);
15: forall(j in 1..m-1)
16: endBeforeStart(op[i][j],op[i][j+1]);
17: }
18: forall(j in 1..m)
19: noOverlap(all(i in 1..n) op[i][j]);
20: }

3.2 Model

A complete OPL model for this problem is shown in Model 1. The instruction at
line 1 tells the model is a CP model to be solved by CP Optimizer. The section
between line 2 and line 8 is data reading and data manipulation. The number
of jobs n is read from the data file at line 2 and the number of machines m
at line 3. A number of arrays are defined to store, for each on the n jobs, the
release date (line 4), due date (line 5), earliness/tardiness cost weight (line 6)
and, for each machine, the processing time of each operation on the machine
(line 7). The normalization factor W is computed at line line 8. The model
itself is declared between line 9 and line 20. Line 9 creates a 2-dimensional
array of interval variables indexed by the job i and the machine j. Each interval
variable represents an operation and is specified with a size corresponding to the
operation’s processing time. Line 10 creates one integer expression C[i] for each
job i equal to the end of the mth (last) operation of the job. These expressions
are used in line 11 to state the objective function. The constraints are defined
between line 13 and line 19. For each job, line 14 specifies that the first operation
of job i cannot start before the job release date whereas precedence constraints
between operations of job i are defined at lines 15-16. Lines 18-19 state that for
each machine j, the set of operations requiring machine j do not overlap.

3.3 Experimental Results

Table 1 compares the results obtained by the default automatic search of CP
Optimizer using the above model (col. CPO) with the best results obtained by
various genetic algorithms as reported in [9] (col. GA-best) and the results of the

IBM ILOG CP Optimizer for Detailed Scheduling 155

Table 1. Results for Flow-shop Scheduling with Earliness and Tardiness Costs

Problem GA-best S-LNS-best CPO Problem GA-best S-LNS-best CPO
jb1 0.474 0.191 0.191 ljb1 0.279 0.215 0.215
jb2 0.499 0.137 0.137 ljb2 0.598 0.508 0.509
jb4 0.619 0.568 0.568 ljb7 0.246 0.110 0.137
jb9 0.369 0.333 0.334 ljb9 0.739 1.015 0.744
jb11 0.262 0.213 0.213 ljb10 0.512 0.525 0.549
jb12 0.246 0.190 0.190 ljb12 0.399 0.605 0.518

best Large Neighbourhood Search (S-LNS) studied in [4] (col. S-LNS-best). A
time limit of one hour was used on a 3GHz processor for CP Optimizer similar to
the two hours limit used in [4] on a 1.5GHz processor. The average improvement
(using the geometric mean over the ratio valueCPO/valueOther) over the best
GA is about 25% whereas the average improvement over the best LNS is more
modest (1.7%).

4 Satellite Scheduling

4.1 Problem Description

The second illustrative model is an oversubscribed scheduling problem described
in [5]. This model is a generalization of two real-world oversubscribed scheduling
domains, the USAF Satellite Control Network (AFSCN) scheduling problem and
the USAF Air Mobility Command (AMC) airlift scheduling problem. These two
domains share a common core problem structure:

– A problem instance consists of n tasks. In AFSCN, the tasks are communi-
cation requests; in AMC they are mission requests.

– A set Res of resources are available for assignment to tasks. Each resource
r ∈ Res has a finite capacity capr ≥ 1. The resources are air wings for
AMC and ground stations for AFSCN. The capacity in AMC corresponds
to the number of aircraft for a wing; in AFSCN it represents the number of
antennas available at the ground station.

– Each task Ti has an associated set Resi of feasible resources, any of which can
be assigned to carry out Ti. Any given task Ti requires 1 unit of capacity (i.e.,
one aircraft in AMC or one antenna in AFSCN) of the resource rj ∈ Resi

that is assigned to perform it. The duration Duri,j of task Ti depends on
the allocated resource rj .

– Each of the feasible alternative resources rj ∈ Resi specified for a task Ti

defines a time window within which the duration of the task needs to be
allocated. This time window corresponds to satellite visibility in AFSCN
and mission requirements for AMC.

– All tasks are optional; the objective is to minimize the number of unassigned
tasks3.

3 A second type of model with task priorities is also described in [5]. In the present
paper, we focus on the version without task priorities.

156 P. Laborie

4.2 Model

A complete OPL model for this problem is shown in Model 2 using the AFSCN
semantics. The section between line 2 and line 6 is data reading and data ma-
nipulation. A tuple defining ground stations data (with a name, a unique integer
identifier and a capacity) is defined at line 2 and read from the data file at line
4. A tuple defining a possible resource assignment for a task (specifying a task,
a station, a task minimal start time, a task duration and a task maximal end
time) is defined at line 3 and read from the data file at line 5. The set of all
tasks Tasks is computed at line 6 as the set of tasks used in at least one possible
assignments.

Model 2 - OPL Model for Satellite Scheduling
1: using CP;
2: tuple Station { string name; key int id; int cap; }
3: tuple Alternative { string task; int station; int smin; int dur; int emax; }
4: {Station} Stations = ...;
5: {Alternative} Alternatives = ...;
6: {string} Tasks = { a.task | a in Alternatives };
7: dvar interval task[t in Tasks] optional;
8: dvar interval alt[a in Alternatives] optional in a.smin..a.emax size a.dur;
9: maximize sum(t in Tasks) presenceOf(task[t]);

10: subject to {
11: forall(t in Tasks)
12: alternative(task[t], all(a in Alternatives: a.task==t) alt[a]);
13: forall(s in Stations)
14: sum(a in Alternatives: a.station==s.id) pulse(alt[a],1) <= s.cap;
15: }

Variables and constraints are defined between line 7 and line 15. Line 7 de-
fines an array of interval variables indexed by the set of tasks Tasks. As tasks
are optional and may be left unassigned, each of these interval variable is de-
clared optional so that it can be ignored in the solution schedule. Each of the
possible task assignments is defined as an optional interval variable in line 8.
When present, these interval variables will be of size dur and belong to the time
window [smin, emax] of the assignment. This is expressed by the size and in
OPL keywords in the interval variable declaration. The objective function is to
maximize the number of assigned tasks, that is, the number of present tasks in
the schedule; this is specified by a sum of presence constraints at line 9.

The constraints lines 11-12 state that each task, if present, is the alterna-
tive among the set of possible assignments for this task, this is modelled by
an alternative constraint: if interval task[t] is present, then one and only one
of the intervals alt[a] representing a ground station assignment for task[t] will
be present and task[t] will start and end together with this selected interval. As
specified by the semantics of the alternative constraint, if the task is absent, then
all the possible assignments related with this task are absent too. The limited
capacity (number of antennas) of ground stations is modelled by lines 13-14.

IBM ILOG CP Optimizer for Detailed Scheduling 157

For each ground station s, a cumul function is created that represents the time
evolution of the number of antennas used by the present assignments on this
station s. This is a sum of unit pulse functions pulse(alt[a], 1). Note that when
the assignment alt[a] is absent, the resulting pulse function is the zero function
so it does not impact the sum. The resulting sum is constrained to be lower than
the maximal capacity cap of the station. An interesting feature of the CP Op-
timizer model is that it handles optional tasks in a very transparent way: here,
the fact that tasks are optional only impacts the declaration of task intervals
at line 7. The notion of optional interval variable and the handling of absent
intervals by the constraints and expressions of the model (here the alternative
constraint and the cumul function expressions) allows an elegant modelling of
scheduling problems involving optional activities and, more generally, optional
and/or alternative tasks, recipes or modes.

4.3 Experimental Results

Table 2 compares the results obtained by the default automatic search of CP Op-
timizer using the above model (col. CPO) with the TaskSwap (TS) and Squeaky
Wheel Optimization (SWO) approaches studied in [5] (col. TS and SWO). Fig-
ures represent the average number of unscheduled tasks for each problem set of
the benchmark. The time limit for each instance was fixed to 120s for problem
sets x.1, 180s for problem sets x.2 and 360s for problem sets x.3. In average,
compared to the best approach described in [5] (SWO), the default automatic
search of CP Optimizer assigns 5.3% more tasks.

Table 2. Results for Satellite Scheduling

Problem set TS SWO CPO Problem set TS SWO CPO
1.1 30.44 26.60 27.50 4.1 3.20 2.00 1.96
1.2 114.02 104.72 98.10 4.2 13.34 7.90 7.48
1.3 87.92 84.52 86.04 4.3 16.60 12.46 9.68
2.1 11.46 7.80 7.84 5.1 3.90 3.80 3.76
2.2 45.54 34.26 30.64 5.2 32.98 31.98 31.72
2.3 33.96 31.18 32.14 5.3 46.18 45.22 44.34
3.1 2.64 2.32 2.28 6.1 1.56 1.28 1.24
3.2 15.50 12.82 11.82 6.2 11.62 9.56 8.92
3.3 32.10 28.58 24.00 6.3 25.28 22.60 19.48

5 Personal Task Scheduling

5.1 Problem Description

The third problem treated in this paper is the personal task scheduling problem
introduced in [6] and available as an add-on to Google Calendar
(selfplanner.uom.gr/). It consists of a set of n tasks {T1, ..., Tn}. Each task
Ti has a duration denoted duri. All tasks are considered preemptive, i.e. they

selfplanner.uom.gr/

158 P. Laborie

can be split into parts that can be scheduled separately. The decision variable pi

denotes the number of parts in which the ith task has been split, where pi ≥ 1.
Tij denotes the jth part of task Ti, 1 ≤ j ≤ pi. The sum of the durations of
all parts of a task Ti must equal its total duration duri. For each task Ti, a
minimum and maximum allowed duration for its parts, smini and smaxi, as
well as a minimum allowed temporal distance between every pair of its parts,
dmini are given. Depending on the values of smaxi and smini and the overall
duration of the task duri, implicit constraints are imposed on pi. For example,
if duri < 2 ∗ smini, then necessarily pi = 1 and task Ti is non-preemptive. Each
task Ti is associated with a domain Di = [si1, ei1] ∪ [si2, ei2] ∪ · · · ∪ [siFi , eiFi],
consisting of a set of Fi time windows within which all of its parts have to be
scheduled. We denote respectively Li = si1 and Ri = eiFi the leftmost and right-
most values of domain Di. A set of m locations is given, Loc = {l1, l2, · · · , lm} as
well as a 2-dimensional matrix Dist with their temporal distances represented
as non-negative integers. Each task Ti has its own spatial reference, loci ∈ Loc,
denoting the location where the user should be in order to execute each part of
the task. A set of ordering constraints, denoted ≺ (Ti, Tj) between some pairs
of tasks is also defined, meaning that no part of task Tj can start its execution
until all parts of task Ti have finished their execution. Time preferences are ex-
pressed for each task Ti. Five types of preference functions are available; they
are depicted on Figure 2:

Task

Part1 Part2 Part3 …

f-2

f-1

f0

f1

f2
L R

Fig. 2. Preference functions

f−2 Execute as much as possible of task Ti after a date d.
f−1 Execute as much as possible of task Ti as late as possible.
f0 No preference.
f1 Execute as much as possible of task Ti as early as possible.
f2 Execute as much as possible of task Ti before a date d.

For a given preference function fi associated with a task Ti that is split into
pi parts Pi,1, ..., Pi,pi , the satisfaction related with the execution of task Ti is
computed as:

satisfaction(Ti) =
pi∑

j=1

∑
t∈Pi,j

fi(t)

IBM ILOG CP Optimizer for Detailed Scheduling 159

It is to be noted that functions fi are normalized in the interval [0,1] in such a
way that an upper bound for the satisfaction for a task Ti is 1.

5.2 Model

A complete OPL model for the personal task scheduling problem is shown in
Model 3. The section between line 2 and line 16 is data reading and data manip-
ulation. A tuple representing a task description is declared at line 2, it specifies
a unique integer task identifier, the location of the task, the task duration, the
minimal and maximal duration of task parts, the minimal delay between two
consecutive task parts, an identifier of the type of preference function for the
task in {−2,−1, 0, 1, 2}, the threshold date in case preference function is of type
f−2 or f2 and two sets of integers ds and de respectively representing the start
and end dates of the intervals [si, ei] of the task domain. The set of tasks is read
from the data file at line 3. A triplet representing the temporal distance between
two locations is declared at line 4 and the transition distance matrix represented
as a set of such triplets is read from the data file at line 5. A tuple storing an
ordering constraint is defined on line 6 and a set of such tuples is read from
the data at line 7. Lines 8-10 respectively compute, for each task t the leftmost
value, rightmost value and diameter of the task domain. A tuple representing
the ith part of a task is defined at line 11 and the total set of possible parts is
computed at line 12 considering that for each task of duration dur and minimal
part duration smin, the maximal number of parts is �dur/smin. Lines 13-16
define a step function holes[t] for each task t that is equal to 1 in the domain of
t and to 0 everywhere else.

Variables and constraints are defined between lines 17 and 42. An array of
interval variables, one interval task[t] for each task t, is declared at line 17; each
task is constrained to end before the schedule horizon (500 in the benchmark).
Line 18 defines an optional interval variable for each possible task part with
a minimal and a maximal size given by smin and smax. A sequence variable
is created at line 19 on the set of all parts p, each part being associated with
an integer type in the sequence corresponding to the location of the part. The
satisfaction expression for each task t is modelled on lines 20-25 depending on
the preference function type; it uses the OPL conditional expression c?e1:e2
where c is a boolean condition and e1 is the returned expression if c is true and
e2 the returned expression if c is false. The normalization factors are the ones
used in [6]4. The objective function, as defined on line 26 is to maximize the
sum of all tasks satisfaction.

The constraints on line 29 forbid any part of a task t to overlap a point where
the step function holes[t] is zero; this will constrain each task part to be executed
in its domain. Constraints on lines 31-32 state that the set of parts of a given
task t forms a chain of optional intervals with minimum separation time dmin
among which only the first ones will be executed, that is, each part a[p] if present
is constrained to be executed before its successor part a[s] and the presence of

4 The objective expression being quite complex, we used the solution checker provided
with the instances to check that the constraints and objective function of our model
are equivalent to the ones used in [6].

160 P. Laborie

part a[s] implies the presence of part a[p]. Constraints on line 36 state that the
total duration of the part of a task must equal the specified task duration dur.
Note that when part a[p] is absent, by default the value of sizeOf(a[p]) is 0. Line
37 constrains each task t to span its parts, that is to start at the start of first

Model 3 - OPL Model for Personal Task Scheduling
1: using CP;
2: tuple Task { key int id; int loc; int dur; int smin; int smax; int dmin; int f; int

date; {int} ds; {int} de; }
3: {Task} Tasks = ...;
4: tuple Distance { int loc1; int loc2; int dist; };
5: {Distance} Dist = ...;
6: tuple Ordering { int pred; int succ; };
7: {Ordering} Orderings = ...;
8: int L[t in Tasks] = min(x in t.ds) x;
9: int R[t in Tasks] = max(x in t.de) x;

10: int S[t in Tasks] = R[t]-L[t];
11: tuple Part { Task task; int id; }
12: {Part} Parts = { <t,i> | t in Tasks, i in 1 .. t.dur div t.smin };
13: tuple Step { int x; int y; }
14: sorted {Step} Steps[t in Tasks] =
15: {<x,0> | x in t.ds} union {<x,1> | x in t.de};
16: stepFunction holes[t in Tasks] = stepwise(s in Steps[t]) {s.y -> s.x; 0};
17: dvar interval tasks[t in Tasks] in 0..500;
18: dvar interval a[p in Parts] optional size p.task.smin..p.task.smax;
19: dvar sequence seq in all(p in Parts) a[p] types all(p in Parts) p.task.loc;
20: dexpr float satisfaction[t in Tasks] = (t.f==0)? 1 :
21: (1/t.dur)* sum(p in Parts: p.task==t)
22: (t.f==-2)? maxl(endOf(a[p]),t.date)-maxl(startOf(a[p]),t.date) :
23: (t.f==-1)? lengthOf(a[p])*(R[t]-(startOf(a[p])+endOf(a[p])-1)/2)/S[t] :
24: (t.f== 1)? lengthOf(a[p])*((startOf(a[p])+endOf(a[p])-1)/2-L[t])/S[t] :
25: (t.f== 2)? minl(endOf(a[p]),t.date)-minl(startOf(a[p]),t.date) : 0;
26: maximize sum(t in Tasks) satisfaction[t];
27: subject to {
28: forall(p in Parts) {
29: forbidExtent(a[p], holes[p.task]);
30: forall(s in Parts: s.task==p.task && s.id==p.id+1) {
31: endBeforeStart(a[p], a[s], p.task.dmin);
32: presenceOf(a[s]) => presenceOf(a[p]);
33: }
34: }
35: forall(t in Tasks) {
36: t.dur == sum(p in Parts: p.task==t) sizeOf(a[p]);
37: span(tasks[t], all(p in Parts: p.task==t) a[p]);
38: }
39: forall(o in Orderings)
40: endBeforeStart(tasks[<o.pred>], tasks[<o.succ>]);
41: noOverlap(seq, Dist);
42: }

IBM ILOG CP Optimizer for Detailed Scheduling 161

part and to end with the end of the last executed part. Ordering constraints are
declared on line 40 whereas line 41 states that task parts cannot overlap and
that they must satisfy the minimal transition distance between task locations
defined by the set of triplets Dist.

5.3 Experimental Results

Table 3 compares the results obtained by the default automatic search of CP
Optimizer using the above model (col. CPO) and a time limit of 60s for each
problem with the Squeaky Wheel Optimization (SWO) approach implemented
in SelfPlanner [6] (col. SWO). CP Optimizer finds a solution to more problems
than the approach described in [6]: the SWO could not find any solution for the
problems with 55 tasks whereas the automatic search of CP Optimizer solves
70% of them. Furthermore, SWO could not find any solution to 4 of the smaller
problems with 50 tasks whereas CP Optimizer solves them all but for problem
50-2. On problems where SWO finds a solution, the average task satisfaction
(average of the ratio between the total satisfaction and the number of tasks) is
78% whereas it is 87.8% with CP Optimizer. It represents an improvement of
about 12.5% in solution quality.

Table 3. Results for Personal Task Scheduling

SWO CPO # SWO CPO # SWO CPO # SWO CPO
15-1 12.95 14.66 30-6 28.09 29.28 40-1 24.72 28.95 45-6 32.70 37.35
15-2 12.25 13.16 30-7 23.80 24.20 40-2 23.48 32.07 45-7 32.40 35.77
15-3 13.71 13.90 30-8 24.06 26.89 40-3 33.57 37.74 45-8 31.79 35.23
15-4 11.57 12.55 30-9 23.42 24.86 40-4 31.46 35.45 45-9 35.79 38.86
15-5 12.64 14.67 30-10 22.04 27.18 40-5 28.05 34.21 45-10 32.78 40.68
15-6 14.30 14.63 35-1 28.80 31.56 40-6 29.46 34.01 50-1 42.04 43.53
15-7 13.08 14.46 35-2 29.17 32.33 40-7 33.13 37.51 50-2 × ×
15-8 11.46 12.37 35-3 27.84 28.58 40-8 29.72 34.90 50-3 × 37.17
15-9 11.44 11.61 35-4 26.64 29.67 40-9 33.03 36.89 50-4 × 36.52
15-10 12.07 13.51 35-5 25.15 32.13 40-10 30.28 34.19 50-5 34.25 43.55
30-1 24.17 29.13 35-6 26.12 29.49 45-1 37.42 42.90 50-6 38.32 41.87
30-2 24.69 27.55 35-7 29.28 31.69 45-2 33.97 39.71 50-7 32.59 42.48
30-3 25.61 26.53 35-8 25.71 30.07 45-3 35.44 39.40 50-8 34.70 43.67
30-4 27.13 28.49 35-9 23.74 29.60 45-4 33.02 37.41 50-9 × 42.75
30-5 23.89 26.46 35-10 30.70 33.41 45-5 30.83 36.65 50-10 37.46 41.84

55-1 × 36.84 55-4 × 40.36 55-7 × × 55-10 × ×
55-2 × 38.56 55-5 × 42.70 55-8 × 45.27
55-3 × × 55-6 × 35.92 55-9 × 42.14

6 Conclusion

This paper illustrates the new scheduling support in IBM ILOG CP Optimizer.
We selected three problems recently studied in the scheduling literature and pro-
vide a simple and concise CP Optimizer model for each of them. The size of the

162 P. Laborie

OPL models range from 15 to 42 lines of code. These models are then solved
using the automatic search of CP Optimizer with default parameter values. We
show that on average, CP Optimizer outperforms state-of-the-art problem spe-
cific approaches on all the problems which is quite a remarkable result given the
generality of the search and the large spectrum of problem characteristics. These
results are consistent with our experience of using CP Optimizer on industrial
detailed scheduling applications. In spite of the relative simplicity of the new
scheduling language based on optional interval variables, it was shown to be
expressive and versatile enough to model a large range of complex problems for
which the automatic search proved to be efficient and robust. The major part of
the future development of CP Optimizer will be the continued improvement of
the automatic search process.

References

1. Laborie, P., Rogerie, J.: Reasoning with Conditional Time-intervals. In: Proc. 21th
International FLAIRS Conference (FLAIRS 2008), pp. 555–560 (2008)

2. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: Reasoning with Conditional Time-
intervals, Part II: an Algebraical Model for Resources. In: Proc. 22th International
FLAIRS Conference (FLAIRS 2009) (2009)

3. Laborie, P., Godard, D.: Self-Adapting Large Neighborhood Search: Application to
Single-mode Scheduling Problems. In: Proc. of the 3rd Multidisciplinary Interna-
tional Conference on Scheduling: Theory and Applications (MISTA), pp. 276–284
(2007)

4. Danna, E., Perron, L.: Structured vs. Unstructured Large Neighborhood Search: a
Case Study on Job-shop Scheduling Problems with Earliness and Tardiness Costs.
In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 817–821. Springer, Heidelberg
(2003)

5. Kramer, L.A., Barbulescu, L.V., Smith, S.F.: Understanding Performance Tradeoffs
in Algorithms for Solving Oversubscribed Scheduling. In: Proc. 22nd AAAI Confer-
ence on Artificial Intelligence (AAAI 2007), pp. 1019–1024 (2007)

6. Refanidis, I.: Managing personal tasks with time constraints and preferences. In:
Proc. 17th International Conference on Automated Planning and Scheduling Sys-
tems (ICAPS 2007), pp. 272–279 (2007)

7. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P., Wagner, F.: ILOG CP Optimizer:
Detailed Scheduling Model and OPL Formulation. Technical Report 08-002, ILOG
(2008), http://www2.ilog.com/techreports/

8. Morton, T., Pentico, D.: Heuristic Scheduling Systems. Wiley, Chichester (1993)
9. Vázquez, M., Whitley, L.D.: A Comparison of Genetic Algorithms for the Dynamic

Job Shop Scheduling problem. In: Proc. GECCO 2000 (2000)

http://www2.ilog.com/techreports/

	IBM ILOG CP Optimizer for Detailed Scheduling Illustrated on Three Problems
	Introduction
	CP Optimizer Model for Detailed Scheduling
	Interval Variables
	Sequence Variables
	Cumul Function Expressions

	Flow-Shop with Earliness and Tardiness Costs
	Problem Description
	Model
	Experimental Results

	Satellite Scheduling
	Problem Description
	Model
	Experimental Results

	Personal Task Scheduling
	Problem Description
	Model
	Experimental Results

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

