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Abstract

This paper presents an energy based approach for the analysis of task scheduling
under time and resource constraints. The problem modelling leans on the notion of
time-resource interval which combines considerations about time and resources. The
scheduling of tasks leads to study the interactions between consumer and supplier
intervals. A consumer interval (or task) has to be included within a supplier one. The
proposed approach aims at refining the temporal bounds of the supplier interval by
considering energy consumption by the other consumer intervals. These results may
be used to characterize feasible schedules or to detect unfeasibilities.

Key words : task scheduling, time-resource interval, constraints based analysis,
temporal reasoning, energy based reasoning.

1 Introduction

This paper deals with the following basic scheduling problem :
e a set of IV tasks is to be realized,
e a task is characterized by its duration and has to be achieved within a time window,

e a task needs for its realization a set of resources. It uses a constant known amount
of each resource all through its duration,

e each resource is supposed to be always available in a constant amount.

A constraint based analysis [1] of this problem is proposed which aims at characterizing
the feasible schedules or at detecting unfeasibilities.

The approach leans on an evaluation of the energy of each resource which is really available
for a given task within its time window, by considering the energy consumption of the other
tasks. Such an evaluation may be used to point out a lack of energy on a part of the time
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window. This leads to narrow the time window which is really available for the task,
through an increasing of earliest starting times or a decreasing of latest finishing times.
This approach is completely different from previous ones [3]. Indeed, the conflicts for using
limited resources are not taken into account in a combinatorial way through sequencing
conditions, but in a more continuous way through energy consumption which straight acts
on time location of the task.

The problem representation is based on the concept of time-resource interval [2] which
is well suited to the energy based approach and which allows to model more general
situations.

The tasks are supposed to be independent, but if not, the updating of limit times can be
propagated with no problem through an appropriate potential graph [5][2] which represents
the constraints between tasks.

2 Statement of the problem

2.1 Time-resource interval [2]

A time-resource interval (later on, we will call it TRI) I is characterized by :
e its temporal bounds C; (starting time) and Fy (finishing time),

e its resource intensity functions QI (¢) with ¢ € [C}, F;] and k € K; where K; is the
resource set associated with I.

A TRI may be defined by its instantaneous characteristics (Cr, Fr, {Q%(¢)}) and/or by its
integral ones i.e. by :
Fr

o its duration : D; = dt = Iy — O
Cr

Fr
e its energy of resource k : W/ = Qi (t).dt
Cr

If Yk, Qi(t) is a constant, I is said to be uniform '. In the sequel, only this case is
studied.

According to considered problems, TRIs are defined by their instantaneous and/or
integral characteristics which are known, unknown, independent or linked - for instance,
duration may be expressed as a function of resource intensity.

Two types of TRIs are to be considered :
e supplier intervals in which time and resource are allocated,
e consumer intervals in which time and resource are required.

A consumer interval is named task. Consider a task ¢ = (C, F;, {q.}), its duration is
known and denoted by D; which is a constant. With each temporal bound, C; and Fj,

Tn this case, energy of resource k on interval I may be written : W/ = (Fr— C]).Qi =Dr.qQl.



we can associate two real values : () € [QZ»,UZ'] and F; € [EZ,FZ] Qi,ﬁi,ﬂi,Fi respec-
tively represent earliest and latest starting time and earliest and latest finishing time of
1. Moreover, supplier intervals are characterized by temporal bounds, known and equal to
constants.

2.2 Compulsory energy consumption

Let A = (Ca, Fa,{Q%}) be a supplier interval and ¢ = (C;, F},{q.}) ? a task with
duration D;; the compulsory energy consumption 3 of resource k by ¢ on A is denoted by
Wi® and is given by :

W]i’A = max{O,mln[(Ql —|— Dz — CA), (FA — (Fz — Dl)),FA — CAsz]}q;g
_ g >0

This result is illustrated in Figure 1.
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Figure 1. : Compulsory energy consumption by ¢z on A.

2.3 Energy based analysis of the interval associated with a task

Consider a task ¢ = (C;, F;,{q¢.}) with duration D; and a supplier interval
be(t) = (Cit,{Q1°Y). We define the following variables :

o« W/(t)=(t—C,).Qic" = energy of resource k possibly provided by 6 (1),

o W' (t)= Z W,i’éc(t) = compulsory energy consumption of resource k
i by all tasks different from ¢ on é6o(7),

o Wi(t)=W'(t)—W"(t) = available energy of resource k on é-(t) for the

execution of ¢,

o Wy(t,C;) = min(t — C;, D;).q. = energy of resource k used by i starting at C; on

Scl(t).

2Remember that Q% and ¢. are constants.
It appears in a similar form in [4] with the definition of the compulsory charge.



Figure 2 shows an example of dynamics of these variables for ¢ varying from C; to F}.
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Figure 2.
©1, ..., g are the times associated with the break points of curve W, (t) *. These times

are called remarkable times of supplier interval éo(F;). By studying curve Wi(t), it is
possible to derive some informations about the available energy distribution and its effect
on the location in time of ¢ (earliest location in this case). Indeed, Wi(t) > Ws(t,C;) Vt
is a necessary condition to start the execution of 7 at time ;. This condition may involve
a “shift” of curve Ws(t,C;) to the right - as shown in Figure 2 - (earliest energy based
analysis); now, 1 cannot start at C;, but only at C/. This involves an updating of the
earliest starting time of 1.

By considering a supplier interval éx(t) = (¢, F;, {QzF(t)}), it is possible to derive sym-
metrical conclusions. The condition W, (t) > Wy(Fj,t), for t varying from F; to C;, may
involve an updating of the latest finishing time of i (latest energy based analysis). Never-
theless, in this paper, we will only consider supplier intervals such as éc(?). To simplify
notation, we will write ¢(¢) instead of 6. (7).

The objective of the analysis is to derive the most accurate effective limit times as-
sociated with task ¢, by considering resources constraints through energy based analysis.

*By considering only uniform TRIs, W’(t) is linear and W"(t) is continuous and piece-wise linear. So,
we can remark that the break points are the same for Wi (¢) and W"(¢).



As a result, the goal is to maximize the updating of ;. With this in mind, the following
approach is proposed :

1. search for all the remarkable times ¢, of supplier interval §(F};),

2. search for ¢, : the remarkable time which involves the greatest updating of C; and
such that Wi(t) < Ws(¢,C;), i.e. starting task ¢ at C; is not allowed,
3. if ¢, exists, then update C; to C/.

These points are detailed in the following sections.

3 Seeking remarkable times

3.1 Times and associated conditions

Let n be the number of remarkable times of supplier interval I = (C;, F;, {Q1}) asso-
ciated with task ¢« = (C}, F;,{q.}), and p = 1,...,n an integer. We note ¢, the different

values of the remarkable times with C'; < ¢, < F; and ¢, < ¢, iff p < p’. The intervals
of interest for the earliest energy based analysis are such that :

[in 991]7 [sz 992]7 [EED) [Qm S‘Qp]v [EED) [Qm @n]

Within intervals [¢,, ¢ut1] (1 < p < n — 1), the evolution in time of the available energy
for the execution of i is linearly time dependent because TRIs are uniform (cf. Figure 2).

Let Z] = {1 / W) # 0} be the set of the tasks which have a compulsory energy
consumption of resource k on I, not equal to zero. Consider a task j = (C}, F}, {gi}), with
duration D; such that : j # ¢ and j € Z{. Within I, we can associate with j the following
remarkable times :

o« v1(j)=F; - D; : latest starting time of 7,
e vo(j)=F;+C; - C, : time ¢ when the compulsory energy consumption by
jon (C;,t,{@Q1}) is the same for the task wedged

either to the right or to the left : '
[t - (FJ' - Dj)]-‘]i = (Qj + D; — ¢;)-qr

o p3(j)=Fj : latest finishing time of 7,

o ©,(j)= Q]' + D; . earliest finishing time of j.

These times are taken into account under a specific condition (over and above that they
are included between C; and F; and that j € Z}) given in Table 1.

‘ bound H condition ‘
Fﬁrgj—(% Qj<Qi<Ej_2] (£5)
C.+D;, | F,-D;<C, (£4)

ot



Table 1

Proof

(F;) 1. to be able to wedge j to the left, it is necessary to have :
Q& <.

2. furthermore, to be able to wedge 7 to the right and to take
into account this situation, it is necessary to have :
T?——[% > (.. 1Indeed, if T?——[% < (C,, then the consumption
of j wedged to the right is necessary greater than or equal
to the consumption of j wedged to the left.

(F3) is evident.

(E,) if F;—D; <, the consumption of j wedged to the left is ne-
cessary less than or equal to the consumption of j wedged to the
right.

Figure 3 shows the situations squaring with the conditions (Fs, F3, E,).
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Figure 3.
Remark 1 : the exclusive character between some conditions on the

bounds enables to determine, at the most, two remarkable times of



I by task :

1 OT @y Or 3 Or 4 or (¢; and ¢,) or (y; and ¢3)

Moreover, F, and Fi are always remarkable times to be considered;
so, ¢, = F;.

3.2 Choice of ¢,
Let © = (Cy, Fi,{¢.}) be a task and 6(¢,) = (Ci,@p,{Qz(w”)}) a supplier interval; we

saw (cf. 2.3) that the execution of i is possible onl_y if Wi(t) > Ws(t,C;), Vt. Among the
whole remarkable times, we search for ¢, which induces the greatest updating of C; and

such that Wi(p,) < Wz(c,o*,C ), L.e.
(. — C;).Q0%) — ZWI ) < min(e, — C;, Dy) gl
l#1

Remark 2 : in order to minimize the number of remarkable times ¢,
to be tested, they are examined according to decreasing values of p.
Indeed, for many examples, the greatest updating of (', is reached
for ¢, = mgxc,op.

4 TUpdating of C;

By considering same task ¢ and supplier interval é(¢.) = (C}, ¢, {QM’*)}), the follow-
ing updating rule may be derived :

if (g — C.QI# < S wy 2 L omin(e, — C;, D;).ql
l#1

5(¢px)
then [F; — maz(p., C; + D;)].q, > Sg(w*) ie. F > 5

— + max(p,,C; + D;)
q

where
See) = S W) o min(p. — €, Di)ogh — (e = C).Q07.
l#1

S,f“’” stands for the minimal energy of resource k required by ¢ which has to be located
out of 8(¢.). Applying this rule may involve a straight updating of F;. This updating
leads to a new definition of intervals §, and the process may be iterated. So, the evolution
of the updated value of I, may be expressed by the recurrent series defined by :

. . Sg"(wf) .
F=r ; L :T+ma$(@*ac +D;)
k

with 62(¢0) = (C, 2, {Q1 “'}).



Since C, = F, — D;, putting ¥ — min(¢f — C¥, D;) in place of max(¢t,Ct + D;) — D;
yields :
1,67 (P 5P(P
ZWk R (#h = CF).Qy (wn)
crtl 12

; + ¢l

s,
Putting W,* ¢*) = ¢15"(eD) g1 (cf. 2.2)

. 87 (L)
azﬁp(wf) — Qx i > 1
Ok
and
!
= 5
I
we get :
1 1,67 (2 67 (1 187 (0) gil
Ot = O™ 4 (1 = oY)+ 3
1£i
Particular case : for disjunctive resources constraints (all the

¢ and () are equal to the same value), a;ép(wf)and ﬁ;l are equal to 1,

SO We can write :

C Y (disjunctive) = C¥ + ZCWF(”’D.
1£i

Series C?*" converges to C in a finite or infinite number of iterations (see Examples).

5 Examples

5.1 Example 1 : disjunctive problem
Reminder : C7*' = 7+ ¢h"ev).
I£i

Consider five tasks a, b, ¢, d, e that share a common unique resource. The task charac-
teristics are given in Table 2.

i al|l b lc| d e
Col2 71151
F, 8149|1314
D, 21115212

Table 2

Earliest energy based analysis according to task e
The supplier intervals to be considered are such as : [1,¢] with 1 < ¢ < 14.
The dynamics of the different energies for e is displayed in Figure 4.

The remarkable time ¢, is given by the greatest value of ¢ such that W; < Ws.
Following on Remark 2, we get Table 3.
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Figure 4.
©® 14 | 13 | 11 9 816 | 4
W, 3 3 3 1 — | — | —
W, 2 2 2 2 — | — | —
W, <W, || NO|NO | NO|YES|—|— | —
Table 3

We have : ¢, =9 and é6(p.) = [1,9].

ZCW(W*) — Cavé(W*) _I_ Ccvé(W*) — 7
l#e

Cr=147=8

Hence : | C7

Earliest energy based analysis according to task d
For d, 5 < ¢ < 13 (see Figure 5 and Table 4).

W’(t)

W”(t)



Task d
8 w’(t)
A —
7
6 W,
5

4| Wyt P
3 \ W,(t,6)

1 W”(t)

Figure 5.
@ 13 7 6
W, 7 1 0
W, 2 2 1
Wy < W, || NO | NO | YES

Table 4

. =T and 8(p.) =[5,7].

Zcz,a(w*) — Co0(ex) — 1.
1£d

Hence : |C=5+4+1=6

Table 5 shows the final result of the earliest and the latest energy based analysis.

i al|l b lc| d e
C; 2171111618
F, 814913 14
D, 21115212

Table 5

5.2 Example 2 : cumulative problem
5.2.1 Case without iteration

Consider now three tasks using one resource available in a quantity greater than one,
and with the following characteristics :

10



‘ 1 ‘ C; | Fi | D 4
al 05 ] 41 Q1
blo[3]2]1
clol 53 ]1
Table 6

Earliest energy based analysis according to task c
The intervals of interest satisfy : [0, ¢] with 0 < ¢ <5 (see Figure 6 and Table 7).

w Task ¢
10 / W’(t)
9 /
8 /
7 /// W”(t)
6 /// ‘/
> W
4 // ’/
3 Wt =
/ Wi (t,1
) 2(t,1)
1 L ///////
0 t
0 1 2 3 4 5
Figure 6.
© 5 3 1
W, 4 2 —
W, 3 3 —
W, < W, || NO | YES | —

Table 7

. =3 and 8(p.) = [0,3].
Do Byt = Cniten) g Che).
l#e

=2x14+2x1=4

a;’é(w*) =2,

Hence : [C7 =0+3x(1-2)+4=1

11



The final results are given below :

i|C | F | Di|g
al 05 ] 41 Q1
blo]2]2]1
¢ 2 5 3 1

Table 8

5.2.2 Case of several iterations

This very elementary example (Table 9) shows an updating process which converges
with an infinite number of iterations.

e
IERERFRE

Table 9

D;

Earliest energy based analysis according to task b

Iteration 1
For b, we have : 0 < ¢ < 3. We get Figure 7 and Table 10.

w

Task b
W (1)
6
5 /
. W20
W, (t,0.5)
3
Wy , —
W”(t)
0 t
0 1 2 3
Figure 7.
P 3 2 1
W, 5 3 1
W, 4 4 2
W, < W, || NO | NO | YES

Table 10

12



™ et gt = ot e = 0
1£b
aZvé(wi) — 1‘

Hence : C; =04+ 04+0.5=0.5

Tteration 2
We have the new problem :

13

L
b|l05] 3 2 2

Table 11

The evolution of energies are for : 0.5 < ¢ < 3 (see Figure 8).
We have ¢? = 2.5 and thus, é(¢?) = [0.5,2.5].

Task b

s W’ ()

W,(t,0.5)

N

W,(t,0.75)
2 s
Wi
1
W (t)
0 t
0 0.5 1 2 3

Figure 8.

St ot = e gt = 0.25
1#b

Hence : C; = 0.5+ 04 0.25=0.75

13



And the procedure is iterated until : ch’é(”’:)ﬂ?l =0.

1#£b
Then : |C} =1
Thus, we obtain :
i|C | F | Di|g or
al] 0] 1] 11 s
ENE
Table 12

6 Conclusion

The results which have been presented above use the energy concept to analyse the
interactions between time and resources constraints in task scheduling. The energy based
approach seems to be promising for it allows to deal with disjunctive and cumulative
resources constraints in an homogeneous way, and for it lends itself to various extensions
(non uniform intervals, discontinuous time windows, resource dependent durations...).

At the present time, there exists two modules implemented in Prolog : the first one
[3] is based on sequencing conditions and the second one was developped on the basis of

the results presented herein.

Comparing the energy based approach and the one which is based on sequencing
conditions should be carried out according to the complexity and the completeness of
feasibility characterization.
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