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Abstract-In this paper, we show how the introduction of a new primitive constraint over finite 
domains in the constraint logic programming system CHIP allows us to find very good solutions 
for a large class of very difficult scheduling and placement problems. Examples on the cumulative 
scheduling problem, the 10 jobs x  10 machines problem, the perfect square problem, the strip packing 
problem and the incomparable rectangles packing problem are given, showing the versatility, the 
efficiency and the broad range of application of this new constraint. We point out that no other 
existing approach can address simultaneously all the problems discussed in this paper. 

1. INTRODUCTION 

CHIP (Constraint Handling in Prolog) [1,2] is a constraint logic programming language designed 
to tackle real world “constrained search” problems with a short development time and a good 
efficiency. Constraint logic programming [3] combines logic, used to specify a set of possibilities 
explored using a very simple built-in search method, with constraints, used to minimize the size 
of the search space by eliminating impossible alternatives in advance. The constraint search 
approach to scheduling has been advocated strongly in the U.S.A. by Mark Fox [4]. However, 
for scheduling and placement problems, existing constraint logic programming languages turn 
out to be not efficient enough to compete with specialized programs coming from the Operations 
Research area. 

We report on research carried out at COSYTEC aimed at identifying suitable abstractions that 
enable, at the same time, a declarative statement of the problem and an operational behaviour 
matching the best available pruning techniques. This paper describes one of these new abstrac- 
tions: the cumulative constraint. We show that the cumulative constraint is a major abstraction 
common to a large class of scheduling and placement problems. 

The paper is structured as follows: in Section 2, we give a brief overview of the CHIP system. 
In Section 3, we present the cumulative constraint and its corresponding declarative semantics. 
In Section 4, we describe two typical scheduling problems: the first one presents a ship loading 
problem [5] where one has to deal with a limited amount of resources; the second one describes the 
famous 10 jobs x 10 machines problem [6] where disjunctive and precedence constraints occur. 
Finally, in the last section, we describe six placement problems: the first one is a very difficult 
packing problem where one has to pack squares of different sizes [7] in a large square in such a 
way that no hole occurs and that none of them overlap each other; the second one describes a 
strip packing problem [8]; the last four problems [g-12] are classical rectangle packing problems 
where the size of the rectangles is not always initially fixed. 

We would like to thank all the COSYTEC team, especially Helmut Simonis, for many fruitful discussions on 
scheduling problems. We gratefully thank Mehmet Dincbas for his continuous support. We thank also Philip Kay 
for helpful comments on this paper. Finally, we also thank Alexander Herold for his support since investigation 
of solving scheduling problems began at ECRC (European Computer-Industry Research Centre). 
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2. BRIEF OVERVIEW OF CHIP 

CHIP is a constraint logic programming language combining the declarative aspect of Prolog 
with the efficiency of constraint solving techniques. It extends conventional Prolog-like logic 
languages by introducing three new computation domains: finite domains, booleans and ratio- 
nals. For each of them, CHIP uses specialized constraint solving techniques: consistency checking 
techniques for finite domains, equation solving in Boolean algebra for booleans and a symbolic 
simplex-like algorithm for rationals. CHIP has been successfully applied to a large number of in- 
dustrial problems, especially in the areas of planning, manufacturing, logistics, circuit design and 
financial planning [13]. Originally designed at ECRC (European Computer-Industry Research 
Centre), CHIP is now marketed by COSYTEC. 

Constraint logic programming, CLP, is based on a combination of Artificial Intelligence, Op 
erations Research and Mathematical methods. One of the basic extensions of CHIP is the intro- 
duction of finite domains. A constraint in finite domains is a relation between a set of domain 
variables. A domain variable is a variable which ranges over a finite set of natural numbers. 
Among constraints over finite domains, one can find usual arithmetic constraints, symbolic con- 
straints and higher-order optimisation predicates which implement a kind of branch and bound 
search. The combination of a constraint solver in a finite domain with the non-determinism of 
logic programming liberates the user from the tree-search programming and makes CLP especially 
attractive for handling combinatorial problems like scheduling and placement. 

As an introductory example to the CHIP language, we present how a very small scheduling 
problem can be expressed in CHIP. We consider four tasks where each task is characterized by a 
duration, a set of successors and a set of tasks that should not be processed simultaneously (see 
Table 1). The aim is to find a schedule of the tasks that minimizes the end of the project. 

Table 1. Data for the scheduling problem. 

task duration successors disjunction 

ti 3 t2, t3 
t.2 4 t4 t3 
t3 2 t4 t2 
t4 I 

A precedence constraint between task i and j implies that task j must start after the completion 
of task i. A disjunctive constraint between task i and j means that either task j must start after 
completion of task i, or task i must start after completion of task j. The following program 
outlines a CHIP program over finite domains solving the previous example. 

project([Tl,T2,T3,T4]) :- % line I 
[Tl,T2,T3,T4] :: O..iO, % line 2 
Tl + 3 #<= T2, % line 3 
Ti + 3 #<= T3, % line 4 
T2 + 4 #<= T4, % line 5 
T3 + 2 #<= T4, % line 6 
min_max(label(CT2,4,T3,2l,T4),T4). % line 7 

label(Disj,End) :- % line 8 
disjunctive(Disj), % line 9 
indomain(End). % line IO 

disjunctive([Ti,Dl,T2,D2]) :- % line II 
Tl + Dl #<= T2. % line 12 

disjunctive([TI,Dl,T2,D2]) :- % line 13 
T2 + D2 #<= Tl. % line 14 

The predicate project/l (see line 1) corresponds to the main predicate to compute the sched- 
ule. The argument of project/l is a list of variables that represents the starting date of each 
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task. As described by the domain declaration (see line 2), the domain of each variable ranges 
from 0 to 10. A precedence constraint (see lines 3-6) between task i and task j is expressed as 

Ti + di # <= Tj, 

where #<= is the inequality constraint symbol over finite domains, where Ti and Tj are respectively 
the starting dates of task i and task j, and where di is the duration of task i. Finally, the built-in 
optimisation predicate min_max/2 (see line 7) minimizes the starting date of task 4. min_max/2 
is a higher-order predicate which implements the branch and bound search exploiting the non- 
determinism of CHIP. Its first argument is a non-deterministic goal over which the search space 
is defined. Its second argument is a cost function. In this example, the goal is the predicate 
label/2, while the cost function is the domain variable T4. The first and second arguments of 
label/2 (see line 8) correspond respectively to a disjunction and to the starting date of the last 
task. Using the predicate disjunctive/l, the predicate label/2 states the disjunctive constraint 
(see line 9) and fixes the origin of the last task (see line 10) using the built-in non-deterministic 
predicate indomain/l (see line lo), which is a generator of values for domain variables. A 
disjunctive constraint (see line 9) between task i and task j is expressed in a non-deterministic 
way by the predicate disjunctive/l (see lines 11-14) which tries different possible orderings of 
tasksiandj. 

In disjunctive scheduling problems, the utilisation of non-determinism to express disjunctive 
constraints in separate clauses is superior from the declarative and expressiveness standpoints. 
However, it turns out to be inefficient for solving hard disjunctive scheduling problems. Indeed, 
each constraint is handled locally once a choice point is made. To achieve a better handling for 
this kind of constraint, we introduce the cumulative constraint. 

3. CUMULATIVE CONSTRAINT 

Originally, the cumulative constraint was introduced in CHIP to tackle complex scheduling 
problems which could not be solved efficiently with current constraint logic programming systems. 
Also, experiments in solving complex decision making problems have shown the possibility of 
extending the use of the cumulative constraint in order to solve placement problems. We now 
describe the declarative semantics and the interpretation of the cumulative constraint 

cumulative( [Si, . . . , $1, [Dl, . . . , Dn], [RI,. . . , RJ, L), 

where [Si, . . . , $1, [Di, . . . , Dn] and [RI,. . . , R,J are non-empty lists of domain variables that 
have the same length n, and where L is a natural number. For a domain variable V, we note 
respectively min(V) and msx(V) the smallest and the greatest value of the domain of the vari- 
able V. Let: 

a = minimum(min(Si), . . . , min(S,)), 

b = maximum(max(Si) + max(Di), . . . ,max(S,) + max(D,)), 

The constraint cumulative holds if the following condition is true: 

c Rj L L, V i E [a,b]. 

Procedurally, the implementation of the cumulative constraint corresponds to a specialization 
of the lookahead [14] declaration. From an interpretation point of view, the cumulative constraint 
matches directly the single resource scheduling problem, where Si, . . . , S, correspond to the start 
ofthetasks, DI,..., D, correspond to the duration of the tasks, and RI,. . . , R,, to the amount 
of resources used by each task. The natural number L is the total amount of available resource 
which must be shared at any instant by the different tasks. The cumulative constraint states 
that, at any instant i of the schedule, the summation of the amount of resource of the tasks that 
overlap i, does not exceed the upper limit L. 



60 A. AGGOUN, N. BELDICEANU 

In Figure 1, we sketch three different cases of the cumulative constraint. The first case (A) 
corresponds to a general use. We show in bold the profile curve of amount of resource required by 
three tasks: task 1 uses one unit of the resources during four consecutive periods, tasks 2 and 3 
use two units during respectively two and three periods. We point out that at any time, the total 
amount of resources used by the different tasks is always less than or equal to three. The second 
case (B), where all the task durations are equal to 1, corresponds to a bin-packing problem. The 
third case (C), where the last parameter of the czlmulative constraint is equal to 1, corresponds 
to a disjunctive scheduling problem. 

1  2 3 4 56 123456 1  

cumulat ive([ l ,2,4] , [4,2,3] , [1 ,2,2] ,3)  cumulat ive([ l ,2,2] , [1 ,1 ,1] , [2,1 ,2] ,3)  cumuiat ive([ l ,4,6] , [2,1 ,1] , [1 ,1 ,1] ,1)  

(A)  03)  (0 

Figure 1. Three examples of use of the cumulative constraint. 

4.  SOLVING SCHEDULING PROBLEMS 

Since the 1960s scheduling problems have captured the interest of many researchers. Sched- 
uling selects among alternative plans and assigns resources and times for each activity so that 
they obey the temporal restrictions of activities and the capacity limitations of a set of shared re- 
sources. From a computational complexity perspective, scheduling problems have been proven to 
be NP-Hard [15]. Many differing approaches have been tried for solving scheduling problems. Op- 
erations Research takes some restricted cases of scheduling problems (single resource scheduling, 
job-shop and flow-shop scheduling, due date scheduling, etc. . . . ) and analyzes the corresponding 
underlying mathematical properties in order to find out the complexity of the restricted problem, 
to get accurate upper and lower bounds of the optimal solution, to propose specialized heuristics, 
and to find algorithms that work well on average. Operations Research gives good results for 
many of the restricted cases, but has a major drawback when faced with real problems where 
many different constraints have to be taken into account simultaneously. Most methods that 
work well on restricted cases and that rely on specific mathematical properties cannot be used 
for complex problems. For this reason, more general approaches were tried in order to deal 
with the complexity of scheduling problems. The expert system approach was first used in order 
to introduce knowledge about dispatching rules used in a shop. Then simulated annealing [16] 
was used for developing general algorithms that give high-quality solutions. More recently, tabu 
search was introduced [17] in order to add more flexibility to the simulated annealing method. 
However, simulated annealing suffers from two drawbacks: it is difficult to handle problems where 
different kinds of constraints occur because all these constraints have to be integrated into one 
evaluation function; highly constrained problems where the number of solutions is very limited 
can not be solved. Recently, constraint logic programming was introduced as a new approach 
for solving scheduling problems [18]. Using the czlmulative constraint presented in the previous 
section, we will now show how CHIP can solve two very difficult scheduling problems. 

4.1. Scheduling with Cumulative and Precedence Constraints 

PROBLEM PURPOSE. The purpose of this example is to show how to solve a scheduling problem 
where cumulative and precedence constraints occur [5]. It contains some discussions about how 
tasks with fixed surfaces are best handled. 

PROBLEM STATEMENT. The problem is to find a schedule that minimizes the time to unload and 
to load a ship. The work contains a set of 34 elementary tasks. Each task has to be handled by 
a given number of people and during a given period of time (see Table 2). For each task, only 
the associated surface is known (i.e., the product of the task duration by the needed amount of 
resource). From a practical point of view, this last constraint is very important because it leads 
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to a good utilisation of the resource [19]. This last point will be illustrated later on a comparative 
example. Besides the usual precedence constraints that arise in scheduling problems, there is also 
a cumzllative constraint because of the limited amount of resources (i.e., people), which must be 
shared by the different tasks. 

Table 2. Data for the ship loading problem. 

N task surf ace successors 

01 12 02, 04 

:: :x 05, 03 07 
04 24 05 
05 25 06 
06 10 08 
07 12 08 
08 12 09 
09 12 10, 14 
10 16 Il. 12 
11 12 13 
12 10 13 
13 4 15, 16 
14 15 15 
15 6 18 
16 9 17 
17 12 18 
18 14 19, 20, 21 
19 4 23 

20 4 21 4 zz 

22 8 23 28 z: 
24 40 25 
25 16 26, 30, 31. 32 

26 3 27 3 ;: 
28 12 29 
29 8 

30 31 : z: 
32 3 33 
33 6 34 
34 6 

PROBLEM SOLUTION. We describe successively the problem representation, the way constraints 
are stated, and finally the heuristic which is used. 

PROBLEM REPRESENTATION. Assume L is the limit on the amount of available resource which 
can be used for the scheduling, and n is the number of tasks of the scheduling problem. 

We first add a fictitious end task of duration 0 that is preceded by all the other tasks. To 
each task i (i = 1,. . . , n) we associate three domain variables corresponding respectively to the 
start of the task &, to the duration of the task Di and to the amount of resource needed by the 
task Ri. 

CONSTRAINT STATEMENT. For each task i the surface constraint is expressed as 

Di x Ri = Surfacei, 

where Surfacei corresponds to the surface of task i (see Table 2). For example, the surface of the 
first task is equal to 12. This means that the pair of variables (01, RI) can only take one of the 
following pair of values: (1,12), (2,6), (3,4), (4,3), (6,2), (12,l). 

A precedence constraint between task i and task j is directly expressed as 

Finally, the resource constraint about the total amount of available resource L is expressed as 

cumulative ([SI, . . . , S,], [Dl, . . . , D,], [RI,. . . , R,], L). 
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CHOOSING A GOOD GENERATION ORDERING. Because tasks may be executed simultaneously, 
the following labeling procedure disjunctive/4 used for disjunctive scheduling (i.e., one task is 
before or after another task) is no longer valid. 

disjunctive(Sl,Dl,S2,D2) :- 
S2 #>= Si + Dl. 

disjunctive(Sl,Dl,S2,D2) :- 
Sl #>= S2 + D2. 

An additional problem comes from the fact that we have to fix the duration or the amount of 
resource used by each task (because of the surface constraint, fixing one of the parameters will fix 
the other one). The generator procedure is based on the following idea. At each choice point, we 
choose a task and label the different possible starting points and the different possible durations. 
The generator procedure is the following program: 

labelingc CSllSl , CDllDl > : - 
indomain( 
indomain( 
labeling(S,D). 

labeling(C 1, C I>. 

The first and the second argument of labeling/2 are two lists of domain variables corre- 
sponding respectively to the origin and to the duration of the different tasks. The predicate 
indomain/l, a non-deterministic predicate, is a generator of values for domain variables. 

COMPUTATION RESULTS. Table 3 gives for different resource limits (L) concerning the number 
of available people, the corresponding optimal finishing date (D) of the schedule, and the time 
(T) in seconds on a SUN/SPARC station IPC(12MB) required for finding the optimal solution 
and for proving its optimality. 

Table 3. Results for the ship loading problem. 

L D T L D T L D T L D T 

11 48 1.48 21 31 0.28 31 24 0.04 

2 204 0.41 12 43 0.45 22 30 0.15 32 24 0.03 

3 169 2.71 13 43 0.60 23 30 0.13 33 24 0.05 

4 122 1.90 14 38 0.46 24 30 0.15 34 24 0.03 

5 91 1.43 15 36 0.29 25 26 0.13 35 24 0.03 

6 82 1.06 16 34 0.30 26 26 0.14 36 24 0.05 

7 68 2.01 17 34 0.28 27 26 0.13 37 24 0.04 

8 56 0.96 18 33 0.26 28 24 0.03 38 24 0.04 

9 53 0.75 19 33 0.25 29 24 0.03 39 24 0.03 

10 50 1.15 20 31 0.34 30 24 0.03 40 23 0.03 

DISCUSSION. In this paragraph, we will show in a comparative example on the ship loading 
problem, why it can be inadequate to fix the duration or the amount of resources used by the 
tasks. For practical applications, this is very important because it can lead to a bad resource 
utilization. Suppose we consider a resource limit of eight people. Figure 2 gives for the optimal 
solution of cost 56, the profile curve of amount of used resources and the origin and contribution 
of each task. In this solution, we can observe that CHIP has to “play” on the duration and on 
the amount of resources used by the different tasks in order to ‘Lpack” them as much as possible. 

Figure 2. Optimal solution of the ship loading problem with a limit of eight people 
(fixed surface). 
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Now, if we consider that the duration D and the amount of resource R of each task N are fixed 
and we take the original data (see Table 4) given in [5], we get an optimal solution of cost 67 (see 
Figure 3) which corresponds to a bad utilization of the resources. 

Table 4. Duration and amount of resource of the tasks for the ship loading problem. 

N 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 

L 03 04 04 06 05 02 03 04 03 02 03 02 01 05 02 03 02 

R 04 04 03 04 05 05 04 03 04 08 04 05 04 03 03 03 06 

N 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

L 02 01 01 01 02 04 05 02 01 01 02 01 03 02 01 02 02 

Fl 07 04 04 04 04 07 08 08 03 03 06 08 03 03 03 03 03 

Figure 3. Optimal solution of the ship loading problem with a limit of eight people 
(fixed duration). 

4.2. Job-Shop Scheduling 

PROBLEM PURPOSE. The purpose of this example is to show how to solve a complex job-shop 
problem where disjunctive and precedence constraints occur. We will take the famous 10 jobs 
x 10 machines problem defined in 1963 in the book Industrial Scheduling of Muth and Thomp- 
son [6]. This problem was considered as one of the most rewarding tests for job-shop scheduling. 
Finding the optimal solution was an open problem during more than 20 years where a lot of 
approaches were tried [20-261. The best available upper bound around 1981-1982 has been 935 
and no reasonable lower bound was known at this time. In 1985 the best available bounds 907 
and 930 were both obtained at the Mathematical Center (Amsterdam), using Lagrangian relax- 
ation methods. Using a highly specialized search algorithm, the problem was completely solved 
by Pinson in 1987 [27]. Our aim is to show how a very simple declarative CHIP program, together 
with the cumulative constraint, can also find the optimal solution. 

PROBLEM STATEMENT. The job-shop problem consists of scheduling n jobs on m machines. To 
each job corresponds a set of tasks that have to be carried out in a fixed order. Each task has to 
be executed on a given machine. The following hypotheses must also hold: 

_ at any time, a machine can execute only one task, 
- the execution of a task cannot be interrupted, 
- waiting between two consecutive tasks of a given job is allowed, 
- each machine is completely available during the schedule, 
_ each machine is independent from the other machines, 
_ each job is independent from the other jobs. 

Each line of Table 5 corresponds to one job and gives a list of pairs (JXYZ, D) where JXY 2 
is a task name and D the duration. In the task name X, Y and Z are hexadecimal numbers 
and correspond respectively to the job number, to the order of the task in the job, and to the 
machine where the task is proceeded; e.g., Ja59 denotes task number 5 in the job 10 and which is 
proceeded on machine number 9. The problem is to find an ordering of the tasks that minimizes 
the end date of the schedule. 

PROBLEM SOLUTION. We describe successively how precedence and disjunctive constraints are 
stated, and give the results corresponding to the use of a basic labeling procedure. 
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Table 5. Data for the 10 jobs x 10 maehines problem. 

~Jlll.29l.CJl22,78l,CJl33, 91,~J144,361,CJ166.491 ,~J166,111.~J177.621,CJ188,561 ,~J199.441,~J1aa.211. 

CJ211.431, CJ223.901. CJ23S.751, CJ24a.111, tJ254.691, CJ262.281 .tJ277.461, CJ286.461, U298,721, cJ2a9.301. 

cJ312.911, cJ321,851, CJ334.391, cJ343.741, ~J369.901,C~366.101, cJ378,12l, [J387,891, CJ39a.453, cJ3aS ,331. 

C~412,811, CJ423.951, CJ431.711, CJ44s,991t CJ457. 91, CJ469.523, CJ478.851, CJ484,981, CJ49a.221, cJ4a6.431. 

CJSl3,141, CJS21, 61. CJ632.221, C~546,61l,CJ654,261 ,CJ566,691 ,CJs79.211 ,CJS88,491, CJS9a.72l. CJSa7.631. 

C~613.841, cJ622. 21, CJ636,521, [J644.951, [J659,481, fJ66a.72l. tJ671.471, CJ687.651, tJ695. 61, CJSaS.251. 

C3712.461, cJ721.371, cJ734.611, CJ743.131, CJ757.321, tJ766,211, CJ77a.321, CJ789.891, CJ798.301, cJ7aS.561. 

C~813.311, CJ821.861, CJ832.461, CJ846.741 .CJ855,321, C~867.881 .CJ879.191, CJ88a.481, CJ898.361, CJ8a4.791. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

[Ja12,851, CJa21,131, CJa33.611, CJa47, 71, CJa59.641, CJa6a.761, cJa76.471, CJa84,62l, [Ja95,901, [Jaa8,451. 
I 

CONSTRAINT STATEMENT. For each task, we create a domain variable corresponding to the 
effective start of the task. We also create a domain variable E for the end of the schedule. 

For each job, the predicate gen_prec/2 generates a set of precedence constraints corresponding 
to the sequencing of the tasks in the given job. The last precedence constraint corresponds to 
a precedence constraint between the last task of the job and the schedule end. The constraints 
generation procedure is the following program: 

gen-prec( CJI, J21Rl , CD1 ,D2)Sl> : - 
Ji + Di #<= 52, 
gen_prec( [J2/Rl , [D21Sl>. 

gen-prec( C-l , C-l > . 

The two arguments of gen_prec/2 correspond respectively to the list of task origins of a given 
job and to their corresponding durations. 

For each machine, the predicate gen-dis j/3 generates one disjunctive constraint corresponding 
to the fact that two tasks that are proceeded on the same machine should not overlap. The 
disjunction is handled as a special case of the czlmulative constraint where the height of each 
task and the height of the schedule (the maximum amount of available resource) are both equal 
to 1. The three arguments of gen_disj/3 corresponds respectively to the number of jobs, to the 
origin of the tasks that are executed on the same machine, and to their corresponding duration. 
The predicate gen_one/2 generates a list of value 1 corresponding to the respective amount of 
resource used by the tasks. 

gen_disj(N,LOrigin,LDuration) :- 
gen-one (N, Lone) , 
cumulative(LOrigin,LDuration,LOne,l). 

gen_one(N, [llRl> :- 
N > 0, 
M is N - 1, 
gen-one (M, R) . 

gen-one (0, [ I > . 

If we consider the data of the 10 jobs x 10 machines problem (see Table 5), the generation of the 
corresponding constraints will look as follows: 

top(Max) : - 
E :: i..Max, 
C5111,5122,5133,5144,5155,5166,5177,5188,J199,J1aa1 :: O..Max, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
gen_prec([J111,5122,J133,5144,5155,5166,5177,5188,J199,J1aa,E], 

C 29, 78, 9, 36, 49, 11, 62, 56, 44, 21,111, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

gen-disj (IO, 
C5111,5211,5911,5321,5521,5721,5821,Ja21,J431,J6711, 
[ 29, 43, 76, 85, 6, 37, 86, 13, 71, 4711, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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COMPUTATION RESULTS. Using the basic labeling procedure for disjunctive tasks described 
in [18], the program finds on a SUN/SPARC station IPC(12MB) a solution of cost 1088 in 
1.06 seconds and the optimal solution of cost 930 in 1506 seconds. The labeling procedure con- 
sists of ordering all the tasks that use machine 1 first, then ordering those using machine 2, and 
so on. 

5. SOLVING PLACEMENT PROBLEMS 

Spatial data [28] such as lines, rectangles, surfaces and volumes are becoming increasingly 
important for many applications such as computer graphics, computer-aided design, geographic 
information systems, computational geometry, and other areas. If constraint logic programming 
intends to deal with these kinds of applications, then it is necessary to understand the represen- 
tation of such spatial data structures and the formulation of spatial constraint propagation [29]. 
This section describes a step towards that goal. We will focus on the problem of allocating a set 
of iso-oriented rectangles without overlapping [30] which has widespread applications in all the 
domains mentioned before. Using the cumulative constraint presented in Section 3, we will show 
how CHIP can solve variants of the previous problem. 

5.1. Perfect Square 

PROBLEM PURPOSE. The purpose of this example is to show how to solve a two-dimensional 
packing problem where squares are involved. This problem illustrates the link between non- 
overlapping and cumulative constraints. 

PROBLEM STATEMENT. The problem is to find out how to pack squares of given sizes into a 
large square in such a way that none of them overlap any other. All the squares have a different 
size and the summation of the surfaces of the different squares is equal to the surface of the 
space where the squares are placed. Table 6 gives the corresponding data for two instances of 
the problem, where (N) corresponds to the size of the large square to pack, and (5’) is the size 
of the squares to pack. It has been shown in [7] that the smallest number of squares that can be 
packed in a large square with the previous conditions is 21. 

Table 6. Size of the squares for the perfect square problem. 

112 2 4 6 7 8 9 11 15 16 17 18 19 24 25 27 29 33 35 37 42 50 

175 1 2 3 4 5 8 9 14 16 18 20 29 30 31 33 35 38 39 43 51 55 56 64 81 

PROBLEM REPRESENTATION. Let N be the size of the large square in which to pack the smaller 
squares, let n be the number of squares to pack, let Xi (i = 1,. . . , n) be the coordinate of the 
origin of square i on the z-axis, let Yi (i = 1,. . . ,n) be the coordinate on the y-axis of square i, 
and let Si (i = 1,. . . , n) be the size of square i (see Figure 4). 

Y 1 
N 

2 
1 

I I 8 
I , , , , ,  1 ,, , , , I  

* 
1 2 4 N  X 

Figure 4. Representation for the square packing problem. 
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From the packing constraint, we can derive the following two necessary conditions correspond- 
ing respectively to cumulative conditions on the x and y axes: 

c Sj I N, V i E [l, N], 
j/x,<ilxj+sj-I 

c S, I N, ‘v’i~ [l,N]. 

(1) 

These conditions state that the coordinates on the x-axis and the coordinates on the y-axis 
have both to verify the same cumulative condition. The link between cumulative constraint and 
packing in two dimensions is developed in [31]. 

PROBLEM SOLUTION. From the previous remark, the problem solution is divided into two steps: 
in a first step, we search for all cumulative solutions on the x-axis and on the y-axis; in a second 
step, we try to combine these solutions in order to solve the initial packing problem. We now 
consider respectively the two steps. 

GENERATION OF THE CUMULATIVE SOLUTIONS. Using the cumulative constraint, the generation 

of all possible cumulative solutions is as follows: 

generate_cumulative_solutions(N,LSize,LStart) :- 
generate_variables(LStart ,LSize,N) ,  

cumulative(LStart,LSize,LSize,N), 
labeling(LStart) .  

generate_variables( [VarlR] , [Size/S] ,N) : - 
M is N - Size + 1, 
Var :: l..M, 
generate-variables (R, S ,  N) . 

generate_variables( [ 1, [ 1 ,_I. 

According to the list of square size and to the size of the large square where to pack, the 
predicate generate-variables/3 generates a list of domain variables corresponding to the origin 
of each square. The origin variable of each square is created in such a way that the square does 
not finish after N. The enumeration procedure is based on the following; at each choice point, we 
consider the earliest possible start associated to the not yet placed squares. Because the surface 
of all the squares to pack is equal to the surface of the large square where to pack, we know that 
no hole is allowed. Therefore, at least one square should start at this earliest start. The labeling 
procedure is thus: 

labeling( [XlY] > : - 
lmindomain( [X/Y1 ,E) , 
f ix_min( [XlY] ,E,R) , 
labeling(R). 

labeling( [ 1). 

fix_min([XIR] ,E,R) :- 
X = E. 

f ix-min( [XIR] ,E, CXlS1 > : - 
X #> E, 
f ix_min(R,E,S) . 

The predicate lmindomain/2 computes the earliest start E 
fix-in/S tries to fix the origin of one square to value E. 

of the not yet fixed squares, and 
In order to restrict as much as 

possible the search space, we fix large squares first. This is simply done by passing to the 
labeling procedure the list of the origin of the squares sorted in decreasing order according to 
their respective size. 

COMBINING THE CUMULATIVE SOLUTIONS. Once we have generated the set of all cumulative 
solutions, we try to combine two cumulative solutions in order to get a solution for the original 
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packing problem. The first cumulative solution will correspond to the x-coordinates of the squares 
and the second solution will correspond to the y-coordinates. The corresponding program is as 
follows: 

combine ( CSol~RSoll , LSize) : - 
combines(RSol,Sol,LSize), 
combine(RSol,LSize). 

combinec [ I,_> . 

combines ( [Sol21RSol] , Soli, LSize) : - 
non_overlapGoli,Sol2,LSize), 

!, 
writeln(solution(Soll.,So12)), 
combines(RSol,Soll,LSize). 

combines ( [Sol2~RSol] , Sol1 ,LSize) : - 
combines (RSol ,Soll ,LSize) . 

combines( [ I ,-,_) . 
non_overlap( [X~RSoli] , [YIRSo121 , [SIRSize] > : - 

no_intersect([X,Y,S] ,RSoll,RSol2,RSize), 
no_overlap(RSoll,RSo12,RSize). 

non-overlap ( C 1 , _ , -1 . 

no-intersect ( [Xl ,Yl ,Sll , [X21RSolll , CY21RSo121 , CS21RSizel) : - 
no_inter([Xl,Yl,Sll, [X2,Y2,S23), 
no_intersect( [XI,YI,SI] ,RSoll,RSol2,RSize). 

no_intersect(_, [ I, C I, C I> . 

no_inter([Xl,Yl,Sll, [X2,Y2,S21) :- 
x1 + Sl =< x2, 
! . 

no_inter([Xl,Yl,Sll, [X2,Y2,S23) :- 
x2 + s2 =< Xl, 
1 

no_int~~([X1,Y1,S11, [X2,Y2,S23) :- 
Yl + Sl =< Y2, 
!. 

no_inter([Xl,Y1,Sll, [XZ,YZ,SZl) :- 
Y2 + s2 =< Yl. 

The predicate combine/2 tries to associate each possible pair of cumulative solutions in order 
to obtain a solution for the original problem. The predicate combines/3 tries to associate a given 
cumulative solution to one of the remaining cumulative solutions. The predicate non-overlap/3 
checks whether all the squares associated to the two given cumulative solutions overlap or not. 
The predicate no-intersect/4 checks whether a given square intersects one of the remaining 
squares associated to the two cumulative solutions. Finally, the predicate no-inter/2 checks 
whether the two given squares intersect or not. Figure 5 gives an example of a perfect square of 
order 24 obtained by CHIP. 

COMPUTATION RESULTS. Table 7 gives, for two instances of the problem (n), corresponding 
respectively to 21 and 24 squares, the computation results. We first give the total time (Tl) 
needed for finding all the cumulative solutions and for proving that no other cumulative solution 
exists. Then we give the corresponding number of choice points (Cl) and the time (2’2) spent 
to combine the cumulative solutions in order to obtain all the solutions of the original packing 
problem. All the times are given in seconds on a SUN/SPARC station IPC(12MB). 

5.2. Strip Packing 

PROBLEM PURPOSE. The example shows how the cumulative constraint can be used in conjunc- 
tion with the cardinality constraint [32] in order to solve efficiently a complex rectangle packing 
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81  

39 

38 

64 

55 

56 

Figure 5. A solution for the perfect square of order 24. 

Table 7. Results for the perfect square packing problem. 

problem. For this problem, the CHIP program outperforms more specialized algorithms from 
Operations Research. 

PROBLEM STATEMENT. This problem, also called strip packing, is described in [33]. Let L, be a 
list of n rectangles of given sizes; they must be packed into a semi-infinite strip of fixed width W. 
Packing of the strip must be such that (i) rectangles do not overlap each other or the boundaries 
of the strip; (ii) the rectangles are packed with their sides parallel to the sides of the strip; and 
(iii) the height of the packing (the maximum height of the top of any rectangle) is minimized. 
The rectangles must be packed in their given orientations, i.e., no rotation is allowed. Figure 6 
shows an example of a strip packing problem with six rectangles. 

Packing height 

4”.... . . . . . . ..“w...” ..*..... “.* 4 . . . . . . . . . . . . . . * w-..... . . . . . . . * 

Figure 6. A strip-packing example. 

For this problem, the data was taken from Komarnicki’s Ph.D. thesis on heuristics for strip 
packing problems [8]. In this example, we have to pack a set of 48 rectangles into a strip of 
width 200. The width and the height of each rectangle is given in Table 8. 
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Table 8. Data for the strip-packing problem. 
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=I = (160,501 

=2 = (149,321 

=3 = (104.50) 

r4 = ( 98,301 

=5 = ( 82,201 

=6 = ( 70.32) 

=7 = ( 70,261 

=8 = ( 68,321 

=9 = ( 64.16) 

110 = ( 63,241 

111 = ( 53, 9) 

112 = ( 52,161 

=13 = ( 51,461 

114 = ( 44, 8) 

115 = ( 42,121 

=I6 = ( 42.30) 

PROBLEM REPRESENTATION. Let W be the width of the strip, let H be the height of the packing, 
let n be the number of rectangles to pack, let Xi and Yi (i = 1,. . . , n) be the coordinates of the 
origin of rectangle i on the zr and y-axes, let Wi and Hi (i = 1,. . . , n) be the width and the height 
of rectangle i. As for the perfect square problem, we can derive two conditions corresponding in 
this case to two distinct necessary conditions of the rectangle packing problem: 

=17 = (42,lO) 

=18 = (82.34) 

=I9 = (68, 8) 

=20 = (46,341 

121 = (53,16) 

122 = (54,121 

=23 = (46,161 

=24 = (45,16) 

=25 = (20,521 

=26 = (14,501 

=27 = (12,321 

=28 = (12.32) 

129 = (12.24) 

130 = (16,22) 

=31 = ( 6,221 

=32 = (10.21) 

=33 = ( 4,211 

=34 = (25,201 

=35 = (24,201 

=36 = (16,19) 

137 = (16.19) 

=38 = (40.17) 

=39 = (16,17) 

=40 = (40,161 

=41 = (32.14) 

r42 = (12,14) 

=43 = (24,121 

144 = (36,121 

=45 = (24,121 

=46 = ( 4,121 

=47 = (40,lO) 

=48 = (25,201 

c Hj I H, ViE [l,W], 
j/X,<i<Xj+W,-1 

c Wj 5 W V i E [l, H] 

0) 

(2) 
j/Y,<i<Yj+Hi-1 

PROBLEM SOLUTION. From the previous remark, we use the two cumulative conditions as re- 
dundant constraints. These conditions are stated using the following cumulative constraints: 

cumulative([[X~,...,X,],[Wl,...,W,l,[H1,...,H,l,H]), 

cumulative ([[Yi, . . . , Y,], [HI, . . . , Hn], [WI, . . . , Wn], WI). 

The non-overlapping constraint is not expressed by a test, as for the perfect square problem 
(see predicate no-inter/2 in Subsection 5.1), we now use a constraint similar to the cardinality 
constraint [32] in order to achieve an active pruning. We represent the fact that two given 
rectangles i and j do not overlap by the following constraint: 

cardinality(l,*, [Xi + Wi 5 Xj, Xj + Wj 5 Xi, I$ + Hi 5 yj, I$ + Hj < I$]). 

The above cardinality constraint holds if, out of the four following constraints Xi + Wi 5 Xj, Xj + 
Wj 5 Xi, Yi + Hi 5 Yj, Yj + Hj 5 Yi,, at least one is satisfied. 

COMPUTATION RESULTS. Using a first-fit like heuristics, the CHIP program finds a solution of 
cost 286 after 6.9 seconds and a solution of cost 285 after 507 seconds on a SUN/SPARC station 
IPC(12MB). With a non-fully automatic CHIP program, where the user can interactively guide 
the search process, we enhance the previous result and obtain a solution of cost 280 (see Figure 7). 
A lower bound for the optimal solution is 274 and can be computed by dividing the total surface 
of the 48 rectangles by the width of the strip. 

Komarnicki [8] takes a different approach, developing a highly specialized heuristics. Within 
this approach, the best solution has a cost of 295 which improved an old existing solution of 
cost 337 found by Baker [34]. 
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5.3. Classical Rectangle Packing Problems 

Figure 7. A solution of cost 280 found with CHIP for the strip-packing problem 

PROBLEM PURPOSE. The purpose of this paragraph is to present briefly four classical rectangle 
packing problems where the objective is to find all the solutions. The main characteristic of these 
problems is the fact that the size of the rectangles may not be initially known. As the resolution 
of these problems is very similar to the one used for the perfect square and strip packing problems, 
we will only give a short description of each problem, followed by the corresponding computational 
results. 

PROBLEM STATEMENT. We first describe the basic constraints common to the four problems. 
Let L, be a list of n rectangles and let R be a rectangle of fixed width w and height h. The 
packing of the rectangles of L, in the rectangle R must be such that (i) rectangles of L, do 
not overlap each other or the boundaries of R; (ii) rectangles of L, are packed with their sides 
parallel to the sides of R; (iii) the summation of the surfaces of the rectangles of L, must be 
equal to the surface of R. The information about the size of each rectangle is given in Table 9. 

We now give the details for each problem: 

- The first problem [9] consists of packing six rectangles of given size, all the rectangles must 
be packed in their given orientation. 

- The second problem [lo) corresponds to the first problem, except for the fact that rotation 
is allowed. 
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- The third problem is taken from [ll] and consists of packing four rectangles for which only 
the minimum width and height are known. 

- The last problem, known as the incomparable rectangles packing problem [12], consists 
of packing seven rectangles of unknown width and height. In this case, an additional 
constraint must also hold between each pair of rectangles of the list of elementary rectan- 
gles L,. This additional constraint between two rectangles RI and Rs of respective width 
wi, w;2 and height hl, h2 holds if and only if the four following conditions are true: 

G :(w > w2)V(h  >  hz) ,  C2 : (w  >  h2>v(h  >w2) ,  

C3  : (w2 >  WI)  v  (h2 >  h) ,  C4 : (w2 > hl) v (h2 > WI). 

These conditions correspond to the fact that RI cannot be included in Rz and that R2 can 
also not be included in RI. Figure 8 shows the solution of the incomparable rectangles packing 
problem. The CHIP program computes the size and the position of each rectangle and proves 
that no other solution exists. 

18x1  

13x3  

4x11  
5x10  

7x7  
6x9  

16x2 

Figure 8. Solution for the incomparable rectangles packing problem. 

COMPUTATION RESULTS. Table 9 summarizes the main characteristics of the four packing prob- 
lems and gives the corresponding computation results. 

Table 9. Results for four classical rectangle packing problems. 

problem 
number of 
rectangles 

+ 

Pfefferkorn 6 

Lauriere 6 

t 

Tong 4 I 
Reingold 1 7 (1..22,1..13) yes (22~3) 4 11.6 

size of 
rotation 

rectangles 

(6,2) (4,2) no 
(2,3) (2,3) 
(2,3) (2~) 

size of big number of time in 
rectangle solutions seconds 

(8>5) 24 0.2 

(6,2) (4,2) y=  (8,5) 72 0.7 
(2,3) (2,3) 
(2,3) (2~) 

(4..9,4..9) yes (979) 288 2.4 
(4..9,4..9) 
(4..9,4..9) 
(4..9,4..9) 

The size of the rectangles are given as a pair of integers (w, h), where w corresponds to the width 
and h to the height. If a rotation is allowed, then the size of a given rectangle to pack is either 
(‘w, h) or (h, w). In case that a rectangle size is not initially fixed, we give the corresponding 
minimum and maximum values. The last column shows the time needed on a SUN/SPARC 
station IPC(12MB) for finding all the solutions and for proving that no other solution exists. 

For the first three problems, Table 10 compares CHIP with a C program especially developed 
for solving floor-planning problems [35]. We give the total number of choice points needed for 
finding all the solutions and for proving that no other solution exists. 
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Table 10. Comparison results for the first three problems. 

problem 
total number of choice 

total number of choice 

points needed by CHIP 
points needed by a special 

purpose C program 

106 14,051 

150 96,846 

1,160 660,134 

6. CONCLUSION 

In this paper, we have introduced the cumulative constraint in CHIP in order to improve 
the efficiency of constraint logic programming languages for solving scheduling and placement 
problems. Combining this new cumulative constraint with the other constraints of CHIP we 
have achieved the following results: 

_ For resource allocation problems, it is the first time that tasks with non-fixed duration 
and amount of resource can be handled in an optimal way in order to have a good overall 
resource utilization. 

- It is the first time that a very simple declarative program was used in order to find 
the optimal solution for the 10 jobs x 10 machines problem; this contrasts with highly 
specialized codes which use the dominance criterion and reduction procedures that do not 
hold when additional constraints have to be considered. 

- The link between non-overlapping and the cumulative constraint was stressed in [31]. It 
is the first time that this link is effectively used in order to solve a highly constrained 
packing problem such as the square packing problem presented in Subsection 5.1. 

_ For the instance of strip-packing problem presented in Subsection 5.2, the solution of 
cost 280 found with CHIP is the best solution currently known at this time. 

_ For the rectangle packing problems where the size of the rectangles is not initially fixed, 
it is the first time that a constraint logic programming language has outperformed more 
specific floor-planning programs. 

_ Finally, we point out that all the previous results were obtained by using only one single 
new abstraction: the cumulative constraint. 

We hope that these results will enhance the credibility of constraint logic programming [36]. 
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