Week 3 Recitation

Robert Woodward

September 7, 2010

- (1 min max) Go over quiz from last week
- (3 min max) Go over homework from last week.
- Questions about lecture / homework so far?
- Guidance for logical proofs:
 - 1. Write the equivalence to prove.
 - 2. Start from either the LHS (left hand-side) or the RHS, whichever you are more comfortable with or whichever seems more complex (so you can simplify it).
 - 3. Put a number on each step starting from zero.
 - 4. Make sure to put the equivalence sign between a step and the next to clarify the meaning of the transition.
 - 5. Justify each transition with the name of the equivalence law you have used.
- Questions

$$-1.2:19 \neg p \leftrightarrow q \equiv p \leftrightarrow \neg q$$

\mathbf{Step}	Sentence	Equivalence law
0	$\neg p \leftrightarrow q$	
1	$\equiv \neg p \to q \land q \to \neg p$	Biconditional law
2	$\equiv (p \vee q) \wedge (\neg q \vee \neg p)$	Implication Law
3	$\equiv (q \vee p) \wedge (\neg p \vee \neg q)$	Commutative Law
4	$\equiv \neg q \to p \land p \to \neg q$	Implication
5	$\equiv p \leftrightarrow \neg q$	Biconditional law.

$$-1.2:21 \neg (p \leftrightarrow q) \equiv \neg p \leftrightarrow q$$

 $\equiv \neg p \leftrightarrow q$

7.

Step Sentence Equivalence law 0. $\neg(p \leftrightarrow q)$ $\equiv \neg((p \to q) \land (q \to p))$ 1. Biconditional law $\equiv \neg((\neg p \lor q) \land (\neg q \lor p))$ 2. Implication Law $\equiv \neg((\neg p \land \neg q) \lor (\neg p \land p) \lor (q \land \neg q) \lor (q \land p))$ Distributive law 3. $\equiv \neg((\neg p \land \neg q) \lor (q \land p))$ Domination law $\equiv (p \vee q) \wedge (\neg q \vee \neg p)$ DeMorgan's Law $\equiv \neg p \to q \land q \to \neg p$ 6. Implication Law

Biconditional Law.

$$-\ 1.2{:}23\ (p\rightarrow r)\wedge (q\rightarrow r)\equiv (p\vee q)\rightarrow r$$

\mathbf{Step}	Sentence	Equivalence law
0.	$(p \to r) \land (q \to r)$	
1.	$\equiv (\neg p \lor r) \land (\neg q \lor r)$	Implication Law
2.	$\equiv (\neg p \land \neg q) \lor r)$	Distributive law
3.	$\equiv \neg(\neg p \land \neg q) \to r$	Implication law
4.	$\equiv (p \vee q) \to r$	DeMorgan's Law.

$$-1.2:15 \neg q \land (p \rightarrow q)) \rightarrow \neg p$$
 is a tautology

\mathbf{Step}	Sentence	Equivalence law
0.	$\neg(\neg q \land (p \to q)) \lor \neg p$	
1.	$\equiv \neg(\neg q \land (\neg p \lor q)) \lor \neg p$	Implication Law
2.	$\equiv (q \lor (p \land \neg q)) \lor \neg p$	DeMorgan's Law
3.	$\equiv ((q \lor p) \land (q \lor \neg q)) \lor \neg p$	Distributive Law
4.	$\equiv ((q \vee p)) \vee \neg p$	Domination Law
5.	$\equiv (q \vee (p \vee \neg p))$	Associative Law
6.	$\equiv q \vee T$	Identity Law
7.	$\equiv T$	Identity Law.

• (Last 10 minutes) Give quiz