Week 2 Recitation

Robert Woodward

August 31, 2010

- (1 min max) Go over quiz from last week we will not be doing interpolation.
- Questions about lecture / homework so far?
- Questions
 - Go over a question similar to Problem A of the homework "Suppose that $a \wedge b$ is known to be true". What is $a \vee b$, $a \to b$. So, a = 1, b = 1. $a \vee b = 1$ $a \to b = 1$. Draw truth table for $a \to b$ and explain how to remember it (Rain analogy). A model for $a \to b$ is $a \leftarrow 0$, $b \leftarrow 1$... and others...

a	b	c	d	$A: (a \lor b \lor \neg c \lor \neg d)$	$B: (\neg b \lor c)$	$C: (\neg a \lor c \lor d)$	$(A) \land (B) \land (C)$
0	0	0	0	1	1	1	1
0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1
0	0	1	1	0	1	1	0
0	1	0	0	1	0	1	0
0	1	0	1	1	0	1	0
0	1	1	0	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	1	1	0	0
1	0	0	1	1	1	1	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	1	0
1	1	1	0	1	1	1	1
1	1	1	1	1	1	1	1

- Review SAT $(a \lor b \lor \neg c \lor \neg d) \land (\neg b \lor c) \land (\neg a \lor c \lor d)$, Term, Literal, Clause, Model.

- Go over 1.1:23 (a) in text. Let p be "It snows today", let q be "I will ski tomorrow". Converse is $q \to p$, Contrapositive is $\neg q \to \neg p$ Inverse is $\neg p \to \neg q$. Converse "I will ski tomorrow only if it snows today", Contrapositive "If I do not ski tomorrow then it will not have snowed today", Inverse "If it does not snow today I will not ski tomorrow"

p	q	$p \rightarrow q$	$q \rightarrow p$	$\neg p$	$\neg q$	$\neg q \rightarrow \neg p$	$\neg p \rightarrow \neg q$
0	0	1	1	1	1	1	1
0	1	1	0	1	0	1	0
1	0	0	1	0	1	0	1
1	1	1	1	0	0	1	1

- Draw truth tables for all of these, what can we conclude about contrapositive?

– 1.1:7 f in text. $(p \lor q) \land (p \to \neg q)$

- 1.1:33 (f) in text.

p	q	r	$A:\neg p\leftrightarrow \neg q$	$B:q\leftrightarrow r$	$A \leftrightarrow B$
0	0	0	1	1	1
0	0	1	1	0	0
0	1	0	0	0	1
0	1	1	0	1	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	1	0	0
1	1	1	1	1	1

- 1.1:13 (a) in text. Let p=1+1=2, let $q=2+2=5.\ p\rightarrow q=1\rightarrow 0$ which is false.
- (Last 10 minutes) Give quiz