Week 16 Recitation

Robert Woodward

December 8, 2010

- Questions about lecture / homework so far?
- Find the solution to the recurrence relation:

$$
\begin{aligned}
& a_{n}=2 a_{n-1}+8 a_{n-2} \\
& a_{0}=3 \\
& a_{1}=4
\end{aligned}
$$

This relation is a linear homogeneous recurrence relation of degree 2 because:

- The right-hand side has only multiples of previous terms of the sequence and coefficients are all constants. Therefore, it is linear.
- No terms occur that are not multiples of a_{j} (i.e., no non-recursive cost). Therefore, it is homogeneous.
- It is expressed in terms of the $(n-2)^{t h}$ term of the sequence. Therefore, it is of degree 2).

We know that a solution to solve this recurrence relation is of the form $a_{n}=r^{n}$ where r is some real constant. Replacing the solution in the recurrence relation, we get:

$$
r^{n}=2 r^{n-1}+8 r^{n-2} .
$$

Dividing by r^{n-2}, we get:

$$
r^{2}=2 r^{1}+8
$$

Thus, the characteristic equation of this recurrence relation is:

$$
r^{2}-2 r-8=(r+2)(r-4)=0
$$

This characteristic equation has the roots $r_{1}=-2$ and $r_{2}=4$; Therefore, the solution of the recurrence relation is

$$
a_{n}=\alpha_{1}(-2)^{n}+\alpha_{2} 4^{n}
$$

Plugging in our initial conditions we get

$$
\begin{aligned}
& 3=\alpha_{1}+\alpha_{2} \\
& 4=-2 \alpha_{1}+4 \alpha_{2}
\end{aligned}
$$

Solving for $\alpha_{1}=3-\alpha_{2}$, we get $4=-2\left(3-\alpha_{2}\right)+4 \alpha_{2} \Rightarrow 4=-6+2 \alpha_{2}+4 \alpha_{2} \Rightarrow \frac{5}{3}=\alpha_{2}$. Therefore, $\alpha_{1}=\frac{4}{3}$ and $\alpha_{2}=\frac{5}{3}$.
Putting the values of α_{1}, α_{2} back in the solution form, we obtain the following solution of the recurrence relation given the boundary conditions

$$
a_{n}=\frac{4}{3}(-2)^{n}+\frac{5}{3} 4^{n}
$$

- Solve the following linear non-homogeneous recurrence relation:

$$
\begin{align*}
a_{n} & =2 a_{n-1}-8 a_{n-2}+n \tag{1}\\
a_{0} & =3 \tag{2}\\
a_{1} & =4 \tag{3}
\end{align*}
$$

We notice that $f(n)$ is polynomial n. We will solve this problem using Theorem 6 on page 469, which covers this case, the case that $f(n)$ is an exponential in n, and the case where $f(n)$ is a product of a polynomial and an exponential in n.
First, we solve the associated linear homogeneous recurrence relation, which happens to be the one above :-). Its solution is:

$$
a_{n}=\alpha_{1}(-2)^{n}+\alpha_{2} 4^{n} .
$$

Next, we find a particular solution for the given non-homogeneous term. Theorem 6 applies to $f(n)$ of the form:

$$
f(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\ldots+b_{1} n+b_{0}\right) s^{n}
$$

In our case, $f(n)=n$ and s is 1 . Since our s is not a root of our characteristic equation (*relief*), there is a particular solution of the form:

$$
a^{p}=\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n} .
$$

For us, the particular solution is $a^{p}=p_{1} n+p_{0}$. Plugging the particular solution in Equation (1), we get:

$$
\begin{aligned}
a^{p}=p_{1} n+p_{0} & =2\left(p_{1}(n-1)+p_{0}\right)-8\left(p_{1}(n-2)+p_{0}\right)+n \\
& =2 p_{1} n-2 p_{1}+2 p_{0}-8 p_{1} n+16 p_{1}-8 p_{0}+n
\end{aligned}
$$

Moving all terms to one side of the equation, we get:

$$
\left(7 p_{1}-1\right) n+\left(-14 p_{1}+7 p_{0}\right)=0
$$

Given that $n \neq 0$, we must have the following:

$$
\begin{array}{r}
7 p_{1}-1=0 \\
-14 p_{1}+7 p_{0}=0
\end{array}
$$

Now, $7 p_{1}-1=0 \Rightarrow 7 p_{1}=1 \Rightarrow p_{1}=\frac{1}{7}$.
Further, $-14 p_{1}+7 p_{0}=0 \Rightarrow-14\left(\frac{1}{7}\right)+7 p_{0}=0 \Rightarrow-2+7 p_{0}=0 \Rightarrow 7 p_{0}=2 \Rightarrow p_{0}=\frac{2}{7}$. We have thus found the particular solution: have $a^{p}=\frac{1}{7} n+\frac{2}{7}$. Therefore,

$$
\begin{aligned}
& a_{n}=a^{h}+a^{p} \\
& a_{n}=\left(\alpha_{1}(-2)^{n}+\alpha_{2} 4^{n}\right)+\left(\frac{1}{7} n+\frac{2}{7}\right) .
\end{aligned}
$$

To determine the values of α_{1}, α_{2}, we plug in our initial conditions:

$$
\begin{aligned}
& 3=\frac{2}{7}+\alpha_{1}+\alpha_{2} \\
& 4=\frac{1}{7}+\frac{2}{7}+-2 \alpha_{1}+4 \alpha_{2}
\end{aligned}
$$

Or:

$$
\begin{aligned}
\frac{19}{7} & =\alpha_{1}+\alpha_{2} \\
\frac{25}{7} & =-2 \alpha_{1}+4 \alpha_{2}
\end{aligned}
$$

Solving for $\alpha_{1}=\frac{19}{7}-\alpha_{2}$, we get $\frac{25}{7}=-2\left(\frac{19}{7}-\alpha_{2}\right)+4 \alpha_{2} \Rightarrow \frac{25}{7}=-\frac{38}{7}+2 \alpha_{2}+4 \alpha_{2} \Rightarrow$ $\frac{63}{7}=6 \alpha_{2} \Rightarrow \frac{63}{42}=\alpha_{2}$ Replacing α_{2} by its value, we get $\alpha_{1}=\frac{-13}{42}$.
Replacing α_{1}, α_{2}, we get

$$
a_{n}=\frac{1}{7} n+\frac{2}{7}+\frac{63}{42}(-2)^{n}+\frac{-13}{42} 4^{n} .
$$

- Give the asymptotic characterization for $T(n)=3 T(n / 4)+8 n^{3}$.

Remember Master Theorem, when we have $T(n)=a T(n / b)+f(n)$ where:

- $T(n)$ is monotone
$-f(n) \in \Theta\left(n^{d}\right)$ where $d \geq 0$,
$-b$ is a constant
we can use it to classify our recurrence relation as follows:

$$
T(n) \text { is } \begin{cases}\mathcal{O}\left(n^{d}\right) & a<b^{d} \\ \mathcal{O}\left(n^{d} \log n\right) & a=b^{d} \\ \mathcal{O}\left(n^{\log _{b} a}\right) & a>b^{d}\end{cases}
$$

Therefore, we can use Master's theorem and $a=3, b=4$ and $d=3$. Therefore, $T(n)$ is $\mathcal{O}(n)$ because $a<b^{d}(3<64)$.

- Draw the recurrence tree for $T(n)=3 T(n / 4)+8 n^{3}, T(1)=1$.

$$
T(n)=3 T(n / 4)+8 n^{3} T(1)=1
$$

- No Quiz

