Example of how to use Algorithm2e

Robert Woodward

November 3, 2010

This is how to write an algorithm (Algorithm 1) for finding the maximum element in a finite sequence (Slide 14 in Class Slides).

```
Algorithm 1: Max finds the maximum number
    Input: A finite set \(A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\) of integers
    Output: The largest element in the set
    \(\max \leftarrow a_{1}\)
    for \(i \leftarrow 2\) to \(n\) do
        if \(a_{i}>\max\) then
            \(\max \leftarrow a_{i}\)
    return max
```

Algorithm 2 is a greedy change-making algorithm (Slide 19 in Class Slides).

```
Algorithm 2: CHANGE Makes change
    Input: A set \(C=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}\) of denominations of coins, where
            \(c_{i}>c_{2}>\ldots>c_{r}\) and a positive number \(n\)
    Output: A list of coins \(d_{1}, d_{2}, \ldots, d_{k}\), such that \(\sum+i=1^{k} d_{i}=n\) and \(k\)
            is minimized
    \(C \leftarrow \emptyset\)
    for \(i \leftarrow 1\) to \(r\) do
        while \(n \geq c_{i}\) do
            \(C \leftarrow \bar{C} \cup\left\{c_{i}\right\}\)
            \(n \leftarrow n-c_{i}\)
    return \(C\)
```

Algorithm 3 and Algorithm 4 will find the first duplicate element in a sequence of integers.

```
Algorithm 3: FindDuplicate
    Input: A set sequence of integers \(a_{1}, a_{2}, \ldots, a_{n}\)
    Output: Location of the first value that repeats a previous value in the
                sequence
    location \(\leftarrow 0\)
    \(i \leftarrow 2\)
    while \(i \leq n\) and location \(=0\) do
        \(j \leftarrow 1\)
        while \(j<i\) and location \(=0\) do
            if \(a_{i}=a_{j}\) then
                location \(\leftarrow i\)
            else
                \(j \leftarrow j+1\)
```

```
Algorithm 4: FindDuplicate2
    Input: A set sequence of integers \(a_{1}, a_{2}, \ldots, a_{n}\)
    Output: Location of the first value that repeats a previous value in the
                sequence
    location \(\leftarrow 0\)
    \(i \leftarrow 2\)
    while \(i \leq n\) and location \(=0\) do
        \(j \leftarrow 1\)
        while \(j<i\) and location \(=0\) do
            if \(a_{i}=a_{j}\) then location \(\leftarrow i\)
            else \(j \leftarrow j+1\)
```

