This is how to write an algorithm (Algorithm 1) for finding the maximum element in a finite sequence (Slide 14 in Class Slides).

Algorithm 1: Max finds the maximum number

Input: A finite set $A = \{a_1, a_2, \ldots, a_n\}$ of integers

Output: The largest element in the set

1. $\text{max} \leftarrow a_1$
2. for $i \leftarrow 2$ to n do
 3. if $a_i > \text{max}$ then
 4. $\text{max} \leftarrow a_i$
3. return max

Algorithm 2 is a greedy change-making algorithm (Slide 19 in Class Slides).

Algorithm 2: Change Makes change

Input: A set $C = \{c_1, c_2, \ldots, c_r\}$ of denominations of coins, where $c_1 > c_2 > \ldots > c_r$ and a positive number n

Output: A list of coins d_1, d_2, \ldots, d_k, such that $\sum i = 1^k d_i = n$ and k is minimized

1. $C \leftarrow \emptyset$
2. for $i \leftarrow 1$ to r do
3. while $n \geq c_i$ do
4. $C \leftarrow C \cup \{c_i\}$
5. $n \leftarrow n - c_i$
6. return C

Algorithm 3 and Algorithm 4 will find the first duplicate element in a sequence of integers.
Algorithm 3: FindDuplicate

Input: A set sequence of integers \(a_1, a_2, \ldots, a_n\)

Output: Location of the first value that repeats a previous value in the sequence

1. \(location \leftarrow 0\)
2. \(i \leftarrow 2\)
3. while \(i \leq n \text{ and } location = 0\) do
 4. \(j \leftarrow 1\)
 5. while \(j < i \text{ and } location = 0\) do
 6. if \(a_i = a_j\) then
 7. \(location \leftarrow i\)
 8. else
 9. \(j \leftarrow j + 1\)

Algorithm 4: FindDuplicate2

Input: A set sequence of integers \(a_1, a_2, \ldots, a_n\)

Output: Location of the first value that repeats a previous value in the sequence

1. \(location \leftarrow 0\)
2. \(i \leftarrow 2\)
3. while \(i \leq n \text{ and } location = 0\) do
 4. \(j \leftarrow 1\)
 5. while \(j < i \text{ and } location = 0\) do
 6. if \(a_i = a_j\) then
 7. \(location \leftarrow i\)
 8. else
 9. \(j \leftarrow j + 1\)