Scribe Notes: 12/1/09
Presenter: Pingyu Zhang

Scribe: Wesley Botham

Paper: Propositional Satisfiability and Constraint Programming: A Comparative Survey

Authors: Lucas Bordeaux, Youssef Hamadi & Lintao Zhang, ACM Computing Surveys, Dec
2006

The speaker

1. llustrated how to model a logic circuit as a SAT problem
Discussed the following basic SAT algorithms: (a) The DP algorithm (Davis, Putnam,
1960); (b) The DPLL algorithm (Davis, Logemann, Loveland, 1962); and (c) A stochastic
search algorithm (Selman, Levesque & Mitchell, 1992)

3. Analyzed the components and implementation details of DPLL in terms of (a) branching,
(b) propagation and (c) backtracking, and

4. Provided a point-by-point comparison of SAT and CP perspectives on search

For item 3, the speaker related the SAT mechanism to the corresponding one in CP. The speaker
also provided a list of new terms that appear in the paper. This summary follows the (above-
listed) structure of the presentation but covers only the first half of the talk (i.e., item 3.(b)
inclusive). It concludes with a glossary of the terms pertaining to the first half of the
presentation.

1. Modeling a Boolean Logic Circuit as a SAT

In SAT, we are asked to determine whether a Boolean sentence can be satisfied. More
formally, in conjunctive normal form (CNF), a sentence is a conjunction of clauses where a
clause is a disjunction of literals and a literal is a Boolean variable or its negation. The query is:
“Is there a simultaneous assignment to all variables such that the sentence evaluates to true?”

The speaker illustrated how to model a hardware verification problem as a SAT problem:
determine whether two circuits were logically equivalent under all combinations of inputs. The
inputs and outputs of the circuits are modeled as SAT variables, the gates as their equivalent
logical sentences. The query was mapped into the requirement that the output of the NXOR
gate comparing the outputs of the two circuits be always 1. (Chris noted that an error on the
slides: the rightmost gate on slides 6 and 8 is a XOR gate and not an NXOR gate. Pingyu
subsequently repaired the slides keeping the XOR gate and replacing the output by 0.)



2. Overview of basic SAT algorithms
Below we summarize the three main procedures for solving SAT.

2.1 DP (Davis-Putnam)
The DP (Davis-Putnam) resolution algorithm consists of a repetitive application of the
resolution inference rule in logic. It works as follows:

e Choose a free variable according to some decision heuristic

e Apply the resolution rule with respect to the variable in all clauses where it appears,
generating new resolved clauses and adding them to the SAT theory

e Repeat until no more variables can be resolved

Unfortunately, this mechanism may produce an exponential number of resolved clauses, which
must be recorded, yielding memory explosion.

2.2 DPLL (Davis-Putnam-Logemann-Loveland)

The Davis-Logemann-Loveland (DLL) algorithm (historically known as DPLLY) is basically an
exhaustive backtrack search that uses the unit literal rule (see glossary) to propagate variable
assignments, the conflict rule (see glossary) to detect unsatisfiability, and an implication graph
(see glossary) to enhance backtracking. It works as follows:

e Using some search heuristic (a.k.a. decision heuristic), assign a value to a free variable

e Apply the unit literal rule until no new assignments can be forced. (The instructor
reminded the class that it is not necessary to reconsider ‘fired clauses’ as each clause
can be used once.)

e [f a conflict is detected, learn a clause that prevents this conflict and backtrack

e Repeat the above steps until a solution is generated or the problem is found to be
unsatisfiable

The speaker walked us through the example on slide 15 using a search heuristic that favors
increased propagation and early conflict detection.

DPLL avoids the exponential clause generation and memory usage explosion of DP. It is also, in
practice, the general frontrunner among SAT search algorithms.

2.3 A stochastic method (e.g., GSAT by Selman, Levesque & Mitchell 1992)
One example of a stochastic method is local search, which we have already seen for CP. It
works as follows:

! Hilary Putnam was not involved with the creation of the DPLL algorithm, but he is included in
the algorithm’s name for historical reasons.



e Initialize to a random assignment (or ‘state’) of all variables

e Using a cost function to evaluate the quality of current state and that of neighboring
states and a heuristic to move to a neighboring state (e.g., flipping variables in
unsatisfied clauses in an attempt to minimize their number).

e When a local minimum is encountered (local search cannot improve the solution), use
random walk or other strategies to randomly ‘leap’ to a neighboring state and repeat,

Unlike previous algorithms, this method is stochastic and therefore not complete.

3. Main steps in DPLL

The DPLL algorithm (sketch shown to the

right) has three main components, namely sat <« false
DECIDENEXTBRANCH, DEDUCE, and Level « ©

ANALYZECONFLICTS. The CP analogues of While sat = false
If DECIDENEXTBRANCH

While Depuce # conflict

those components are:

1. DECIDENEXTBRANCH uses a heuristic Level <« ANALYZECONFLICTS
to decide which variable to If Level < ©
instantiate as search proceeds Return sat

2. Depuce applies a propagation Else BAckTRACK(Level)
algorithm to perform some kind of Else
look-ahead during search Return sat <« true

3. ANALYZECONFLICTS backjumps when a
dead end is encountered by analyzing and recording the source of conflict

3.1 Branching: Decision Heuristics

Many heuristics for use by DeECIDENEXTBRANCH were discussed, generally falling into the same
two strategies used in CP heuristics: pursuing early conflicts and pursuing solutions. For
efficiency reasons, sublinear heuristics are preferred. Heuristics discussed included:

e RAND, which chooses a variable completely at random

e Dynamic Largest Combined Sum (DLCS), which chooses the variable which appears in
the greatest number of clauses (in CP, this heuristic corresponds to the largest degree
heuristic)

e Dynamic Largest Individual Sum (DLIS), which chooses the variable that has the greatest
number of literals or the greatest number of complement literals in the problem



In general, upon choosing a variable to instantiate, both DLCS and DLIS will instantiate it to
whichever value satisfies the greatest number of unresolved clauses. However, randomized
heuristics exist, which simply assign a random value to this variable.

DLIS and DLCS both use expensive methods to maintain statistics on the number of literals
satisfied or unsatisfied by a given assignment. Furthermore, they do not account for new
learned clauses. The VSIDS (Variable State Independent Decaying Sum) heuristic addresses
both shortcomings. VSIDS works as follows:

e When instantiating a new variable, choose the literal that has the highest ‘score’

e The score of a literal is the number of times it appears in the problem among all clauses

e When new clauses containing the literal are learned, the score is updated accordingly

e We periodically induce ‘decay’ by dividing all scores by some constant; that decay gives
greater weight in decision-making to recently-learned clauses

We discussed the authors’ claim that, unlike SAT decision heuristics, CP search heuristics are
domain dependent and highly specific to problems. It was argued that, although tailored
heuristics do exist, the bulk of CP search heuristics, in fact, have very general applicability.

3.2 Binary Clause Propagation (BCP)

Binary clause propagation? is a powerful method that can be incorporated into the DEDUCE step
of DPLL in addition to the unit rule literal rule. It is based on applying the unit resolution rule
repeatedly to quickly infer the values of forced variables (reminiscent of the domino effect in a
look-ahead scheme in CP).

The speaker stated that BCP takes up to 90% of the time in DPLL and we must therefore be
extremely careful in implementing it. For this reason a wide variety of implementations have
been developed in hopes of reducing this effort. (The instructor drew a parallel with the myriad
arc consistency, path consistency, etc. propagation algorithms that are constantly being fine-
tuned by researchers in CP.)

The speaker introduced three leading BCP implementations (GRASP, SATO, and Chaff). The
class ended at that point and those BCP algorithms will be the discussed in the following set of
minutes.

2 Do not confuse Binary Clause Propagation (BCP) with Binary Clause Reasoning. See the
glossary for further explanation.



Glossary

Binary clause reasoning: 2SAT is tractable; binary clause reasoning applies that insight to
identify binary clauses within a SAT problem and to solve this fragment of the theory in
polynomial time.

Conflicting rule: If all literals (not variables!) are forced to 0 during propagation, the SAT
sentence becomes unsatisfiable. When this situation occurs during search, we know we have
reached a dead end: we must identify the source of the conflict and backtrack to it.

Hyper-resolution: The repeated application of the resolution inference rule can treated as a
single inference step yielding the same result.

Hyper-bin-resolution: This mechanism is a special instance of hyper-resolution and focuses on
generating new binary clauses by the application of the resolution rule in order to allow further
application of the binary clause reasoning.

Implication graph: A directed graph in which vertices are variable assignments (either by search
or by propagation). The edges record the clauses that caused the assignment of a variable by
propagation. The implication graph stores information on the reason for each variable’s
assignment: whether it was assigned by a search heuristic or by propagation and which level of
search it was assigned on.

Learned clause: A clause learned by applying the conflicting rule. It is the negation of the clause
which ultimately caused the contradiction to occur.

Original clause: A clause included in the original statement of the problem.

Resolution rule: Consider the case where two (disjunctive) clauses contain the same variable,
one in its positive form and the other in its negative form. The resolution rule infers a new
(disjunctive) clause listing all the literals in either of the two clauses not including the
complementary pair.

Unit literal rule: When, in a disjunctive of 1 literals, (1-1) literals are set to 0, we can force the
single remaining literal to evaluate to 1 (otherwise the SAT sentence is unsatisfiable).

Unit resolution: This rule is a special case of the resolution rule where one clause has only two
literals and the other one literal. The application of the unit resolution rule allows us to force
the value of the literal appearing in only one of the clauses. The repetitive application of the
unit resolution rule is the basis of the Binary Constraint Propagation (BCP) mechanism.

Variables:



e Ffree variable: A variable whose value has not been set.
e Decision variable: A variable whose value is set by search.
e Forced variable: A variable whose value was determined by propagation.



	1. Modeling a Boolean Logic Circuit as a SAT
	2. Overview of basic SAT algorithms
	2.1 DP (Davis-Putnam)
	2.2 DPLL (Davis-Putnam-Logemann-Loveland)
	2.3 A stochastic method (e.g., GSAT by Selman, Levesque & Mitchell 1992)

	/3. Main steps in DPLL
	3.1 Branching: Decision Heuristics
	3.2 Binary Clause Propagation (BCP)

	Glossary

