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This document summarizes the Path Consistency (PC) property and PC algorithms.  It 
reviews triangulated graphs, and discusses PC algorithms on STPs.  The material is 
summarized from Peter and Wesley's presentation. 

1. Path Consistency as a consistency property 
A CSP is PC iff it is strongly 3-consistent (van Beek & Dechter, JACM95). Given a PC 
CSP, every consistent solution over two variables can be extended to every third 
variable. The domains of the variables are filtered by AC. 

In general, PC algorithms iterate over triplets of variables. In STP, variable domains 
are irrelevant, thus PC algorithms on STPs only enforce 3-consistency.  

Typical PC algorithms determine if the CSP is path consistent, and may or may not 
filter the constraints as much as possible (e.g., DPC). 

 
2. Properties of PC algorithms 

Consider the PC algorithms: PC-1, PC-2, DPC, PPC, PC-8 and PC-2001. All PC 
algorithms stop when a relation or a domain is empty although this fact is not always 
specified in the pseudocode. PC algorithms may or may not have a queue. The 
queue, if used, may hold edges (e.g., PPC) or triplets of variables (PC-2) or tuples of 
'vv-pair, variable' (e.g., PC-8 & PC-2001.) 

The characteristics of a PC algorithm are described by 

• Its ability to determine the PC property, i.e. whether or not the CSP is strong 
3-consistent 

• Its time and space complexities 
• Its requirements for additional data structures for remembering supports 
• The structure of the graph on which it operates (e.g., complete or chordal), 

and 
• Its performance in practice. 



Below I review each algorithm and its characteristics. 

2.1 PC-1 (Mackworth 77) 
The PC-1 algorithm has 4 nested loops that iterate over every combination of three 
variables until quiescence. It does not have a queue. It updates the edges and the 
domains by using composition and intersection. It determines strong 3-consistency in 
O(n5d5) time, and does not use additional data structures. It operates on complete 
graph.  

2.2 PC-2 algorithm (Mackworth 77) 
The PC-2 algorithm (Mackworth 77) uses a queue of triplets of variables, and iterates 
over the elements of the queue until the queue is empty. When an edge of a domain 
is updated, the triplets with the external third node are added to the queue. It 
determines strong 3-consistency. It is faster than PC-1 with time complexity O(n3d5), 
and space complexity O(n3) for the queue, with no additional data structures. It 
operates on the complete graph. 

2.3 PPC (Bliek & Sam-Haroud 99) 
PPC uses a queue of edges. For each edge popped from the queue, it iterates over all 
triplets of variables related to that edge. If a relation corresponding to an edge in the 
triplet changes, then the edge is added to the queue. It operates on a chordal graph, 
hence it first triangulates the graph. PPC enforces strong PC, but has weaker filtering 
power than PC-2. The time complexity is O(δed2) where δ is the degree of the graph. 
The space complexity is O(δe). If two or more edges of a triplet are in the queue, all 
three edges are redundantly updated once for each edge in the queue. The 
redundant work is avoided in △STP. 

2.4 DPC (Dechter & Pearl 89) 
DPC operates on a given ordering of variables. It traverses the variables bottom to 
top in the given ordering first enforcing DAC.  On a second pass, it update the edge 
between every two of the parents of the traversed variable. As a result, it moralizes 
the graph and determines strong directional path consistency relative to the 
ordering. The time complexity is O(min(t.d3,n3d3)), and does not use any additional 
data structures. It operates on chordal graph.  

2.5 PC-8 (Chmeiss & Jegou 98)  
PC-8 uses a queue of (vvp, variable) elements, and determines strong PC achieving 
full filtering. The time complexity is O(n3d4) and the space complexity is O(n2d). It 
operates on a complete graph. PC-8 outperforms PC-2 at phase transition. 
 



2.6 PC-2001 (Bessiere+ 05)  
PC-2001 uses the same queue as in PC-8, but in addition records supporting values to 
improve time complexity. Hence it achieves the same properties as in PC-1, PC-2 and 
PC8 in time complexity of O(n3d3) and space complexity O(n3d2). It operates on 
complete graph. PC-2001 is faster than PC-8, but has worse space complexity. 
 
3. Triangulated Graphs 
The speakers  
The speakers recalled various definitions relative to triangulated graphs: 

• A triangulated graph is a graph with a chord for every cycle of length four or 
more.  

• Every triangulated graph has a perfect elimination ordering (PEO), and every 
graph that has a PEO is triangulated.  

• PEO is an ordering of the graph vertices that when removed one vertex at a 
time in that order, each removed vertex is a simplicial vertex at the time of 
removal.  

• A vertex is simplicial if all of its neighbors are connected.  
• Fill in edges are the edges that need to be added to make a vertex simplicial. 
• The width of a triangulated graph is equal to the size of the its largest clique-1.  
• The induced width of the PEO is the width of the triangulated graph.  
• The reverse of the PEO yields a moralized graph. 

 
Triangulated graphs are relevant for the study of PC algorithms for the following 
reasons: 

• DPC operates on a moralized graph (in fact it moralizes the graph). 
• PPC by Bliek & Sam-Haroud operates on triangulated graphs, determines the 

property of strong PC, and when the constraints are convex, yields minimal 
CSP. 

4. PC on STPs 
Floyd-Warshall, Bellman-Ford, △STP and P3C are algorithms for enforcing PC on STPs. 

• Floyd-Warshall is a basic STP solver with three nested loops. If no edge is 
found between a pair of variables, adds and edge with infinite distance. The 
time complexity is ϴ(n3). Operates on complete graph. 

• Bellman-Ford does not guarantee minimality, but detects inconsistency. The 
time complexity is O(en). 

• △STP by Xu & Choueiry adapts PPC to CPSs without updating the domains. 
△STP maintains a queue of triangles instead of queue of edges.  Similarly to 



PPC, it operates on triangulated graphs, and fully filters the constraints 
because they are convex. It keeps a queue of triangles, and for each popped 
triangle updates all the three edges. When an edge is updated, it enqueues 
only the triangles adjacent to the updated edge. Performance is best when the 
queue is FIFO.  Experiment results show that △STP performs better than PPC, 
and PPC performs better than F-W.   Planken et al. showed that △STP is Ω(t2) 
on a pathological case, t is the number of triangles, and proposed P3C, that is 
O(t).  A more accurate bound for △STP is O(min(t2, δed2)). 

 
5. P3C 
Designers of △STP became aware of the relevance of perfect elimination ordering in 
△STP in 2005 (ref. Nic Wilson), and the designers of Prop-STP exploited this idea. The 
authors of P3C formalized the flaw of △STP, and proposed a two phase algorithm 
over a given perfect elimination ordering to achieve the filtering equivalent to △STP. 

1. In the first phase, it applies DPC bottom up, considering every pair of parents 
for each variable in the ordering, and updates the edge between the parents. 

2. In the second phase, moves top down, considering every pair of parents for 
each node and updates the edges adjacent to the node.  

In each phase, P3C visits each triangle once, hence it runs in ϴ(t) time. 
 
6. Discussions 

• △STP: when a triangle that is to be added because of an update is already in 
the queue, it is not added, and the triangle in the queue keeps its position. 

• △STP operates within each biconnected component (“does not pass through 
articulation points”) and the domains are not updated. 

• △STP and P3C have the same time when applied on a graph with enforced 
consistency. This is because both algorithms visit each triangle at most twice 
when there are no updates. △STP may re-visit triangles in case of updates, 
while P3C does not. 

• The proof of correctness of the P3C algorithm was extensively discussed during 
the presentations.  
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