Summary: Robert Woodward’s presentation on
Properties of Tree Convex Constraints

Peter Schlette

November 17, 2009

1 Story

• This paper builds on the concept of tree convexity.
• (Tree convexity ∧ path consistency) → global consistency.
• If the CSP is not path consistent, we need to enforce PC.
• Path consistency algorithms utilize the ∩ and ◦ operators
 – While the ∩ operator preserves tree the tree convexity property, the ◦ operator may damage it, so how can we ‘recuperate’ global consistency?
• The authors propose the consecutiveness property, which is closed under ◦, but not ∩.
• Then they propose the “Locally Chain Convex” (LCC) property, which is closed under ∩, but not ◦.
• When graphs are LCC and also Strictly Union Closed (SUC), they’re closed under both ∩ and ◦, so we can safely enforce path consistency!
 – Thus (LCC ∧ SUC) → (PC ∧ → global consistency).

2 Introduction

What is tree convexity?
• Defined on a binary constraint network.
• The constraint C_{xy} is tree convex iff the domain of the variable Y can be arranged into a tree such that the *image* (defined below) of each of the values of variable X are all subtrees of this tree.

• A linear time algorithm to find a tree that satisfies this property exists [Conitzer+ Al104].

• Tree convexity can also be defined for a CSP: if every edge in the graph is tree convex, then we say that the CSP itself is also tree convex.

3 Definitions

• C_{xy} and C_{yx} are considered as distinct constraints, but one is the inverse of the other.

• *Image*: With respect to a constraint C_{xy}, the image of $u \in X$ is the set of all values $v \in Y$ that support it. Can also be defined for multiple values of X (or the whole domain) by unioning the individual images. This definition is obvious when you think of the constraint as a relation between two sets.

• Reviewed graph concepts:
 - A tree is a connected graph with no cycles.
 - A chain has at most one child per node.
 - A forest is a set of trees. The paper assumes that the root of each tree is given.

• If a CSP is tree convex and path consistent, then it must also be globally consistent.
 - Robert covered the inductive proof of this claim on the slides.

From the paper:

• **Tree Convex (TC)** - Sets E_1, \ldots, E_k are tree convex with respect to a forest T on $\bigcup_{i \in 1..l}$ if every E_i is a subtree of T.
 A constraint C_{xy} is tree convex with respect to a forest T on D_y if the images of all values of D_x are tree convex with respect to T.

 A constraint network is tree convex if there exists a forest on the domain of each variable such that every constraint C_{xy} of the network is tree convex with respect to the forest on D_y.

• **Consecutive** - A tree convex constraint C_{xy} with respect to a forest T_y on D_y is consecutive with respect to a forest T_x on D_x if and only if for every two neighboring values a, b on T_x, $I_y(a) \cup I_y(b)$ is a subtree of T_y.

• **Locally Chain Convex (LCC)** - A constraint C_{xy} is locally chain convex with respect to a forest on D_y if and only if the image of every value in D_x is a subchain of the forest.

A constraint network is locally chain convex iff there exists a forest on each domain such that every constraint C_{xy} is locally chain convex with respect to the forest on D_y.

• A constraint C_{xy} is locally chain convex and strictly union closed (LCC & SUC) with respect to forest T_x on D_x and T_y on D_y iff the image of any subchain on T_x is a subchain of T_y.

A constraint network is LCC & SUC iff there exists a forest on each domain such that every constraint C_{xy} of the network is LCC & SUC with respect to the forests on D_x and D_y.

4 Properties

• Tree Convexity (TC)
 - The intersection of two tree convex constraints is still TC, due to the intersection of two subtrees still being a subtree of T.
 - However, this is not the case for composition; it will destroy TC in the general case.

• Consecutiveness
 - Consecutive constraints are closed under composition!
 - As before with TC, this can be generalized to CSPs by defining a consecutive CSP to be a CSP whose edges are all consecutive.

5 Tractable Networks

• Locally Chain Convex (LCC)
 - If a constraint is LCC, it will remain LCC after the removal of a value from the domain
 - However, composition can still destroy LCC.

• We’ll want both LCC (for closure over intersection) and consecutiveness (for closure over composition) combined. How to do this?
• LCC & SUC (Locally Chain Convex and Strictly Union Closed).
 – This set of properties means that the network can be rendered globally consistent in polynomial time.
 – We can prove that LCC & SUC CSPs are closed under both intersection and compositions; Robert reviewed the steps during the presentation.

6 Wrap-Up

• Robert demonstrated an application of tree convexity, a specific instance of the scene labeling problem.

• However, the existence of efficient algorithms for finding local chain convexity and strict union closedness is still open, so present application is limited.

• The approach is compared to tractable languages by Jeavons et al. and to another convexity property by Kumar.
 – The authors argue a fundamental distinction between the tractability of constraint languages and that of constraint problems.
 – The authors argue that the convexity property introduced by Kumar guarantee tractability assuming the use of randomized algorithm, and not deterministic algorithms as in this paper.