
Scribe Notes of October 15, 2009 
Speaker: Shant 
Scribe: Chris
 
Paper: Exploiting Problem Structure for Solution Counting 
Authors: Aurélie Favier, Simon de Givry, and Philippe Jégou

1. Summary of idea & main results

The problem & the proposed approaches.  This paper addresses the problem of counting the number of 
solutions of a CSP, which is the #CSP problem. There are two possible approaches to this problem: 

1. Exact  methods.   As  an  exact  approach,  the  authors  propose  to  use  the  Backtracking  Tree 
Decomposition (BTD) algorithm, which exploits the structure of the problem.  Below, we choose 
to refer to this technique as #BTD to differentiate it from BTD.

2. Approximate  methods.   As  an  approximate  method,  they  propose  a  new  algorithm,  called 
APPROXBTD,  which is  based on applying the  BTD to a decomposition of  the  original  CSP into 
subproblems.

Motivation. Because, in practice, the number of solutions of a CSP can be huge, it is not always practical 
to use exact techniques.  In those situations, approximate techniques become highly desirable.  The 
authors recommend using the #BTD when seeking the exact number of solutions.  Because it exploits 
the structure of the problem, this technique can be significantly better than enumeration techniques. 
When it is not practical to compute the exact number of solutions, the authors propose ApproxBTD, 
which also exploits the problem structure. ApproxBTD provides a good approximation of the number of 
solutions as well as an upper bound on the number of solutions. 

The central idea. The key idea in the paper is to compute the number of solutions of a given CSP by 
finding the product of  the number of  solutions of  a  set  of  subproblems obtained from the original 
problem by decomposition.  The decomposition exploits the structure of the problem:

1. The exact method, #BTD, exploits the idea that, in a tree decomposition of the CSP, the number 
of solutions of the CSP can be computed recursively by multiplying the number solutions of the 
children  of  the  subproblem  for  each  solution  of  the  root  subproblem  then  summing  the 
numbers obtained for each solution of the root problem.  You can multiply the solutions for 
each child node because they are truly separate solutions.

2. The approximate methods, APPROXBTD, exploits the idea that a CSP problem can be decomposed 
into a number of subproblems whose constraint graphs are chordal and maximal (MAXCHORD 
algorithm).   The resulting subproblems typically  have a  low tree width,  which allows us  to 
‘efficiently’  compute their  sizes  (using  #BTD)  to  then compute the approximate number of 
solutions in the original problem as well as an upper bound.

The main results. The authors show:
1. How the BTD can be used to compute the exact number of solutions using the structure of the 

tree  decomposition.   They  empirically  demonstrate  that  it  is  competitive  against  known 



techniques when the tree width of the chosen tree decomposition of the CSP (which is found by 
tree clustering) is small.

2. How APPROXBTD can be used to compute the approximate numbers of solutions, as well as, an 
upper  bound on  the  number  of  solutions.   They  empirically  demonstrate  that  APPROXBTD is 
quicker than competing approximation techniques and gives good approximation results.  

2 BTD and #BTD

Tree decomposition of a CSP.  Shant recalled the definition of a tree decomposition and that of the ‘tree 
width’ parameter:

• The tree width of a tree decomposition is a parameter that characterizes a given tree obtained 
by a given tree decomposition technique.  It is the number of variables in the largest cluster in 
the tree minus one.  

• The tree width of a CSP is a parameter that characterizes the constraint network of the CSP (i.e., 
the parameter does not depend on the particular tree decomposition technique used).  It can 
be computed as the minimum tree width of all possible tree decompositions of the CSP, and 
finding it is NP-hard.

Solving  a  CSP  with  BTD.  In  a  tree decomposition,  a  separator is  a  set  of  variables that  are common 
between  two  adjacent  tree  nodes.   They  are  called  separators  because  removing  them  from  the 
problem (or instantiating them) will separate the two tree nodes.  BTD proceeds by solving the problem 
from the root of the tree down to the leaves.  It uses backtrack search to solve a given tree node.  As 
partial solutions are propogated from the root to a leaf node (respectively, a descendant node) and are 
found to be consistent (respectively, inconsistent), the projection of the solutions on the separators are 
recorded as  lists  of  goods  (respectively,  no-goods).   When the  same values  for  the  separators  are 
explored in another solution starting from the root, the search is interrupted because it is known that 
the path will yield a solution (respectively, a dead-end).  In this way you can reuse the goods (and no-
goods) in future assignments to save work.  This is done using the following algorithm:

1. Solve the first/root problem
2. Assign values to the variables in the root problem which appear in a solution of the problem.
3. For each child problem, assign the variables in the separator the values that they were given in 

the parent problem.
4. Extend the solution to the child

• If  this  succeeds,  you can record a good for the values given to the variables in the 
separator

• If  this  fails,  you  can  record  a  no-good  for  the  values  given  to  the  variables  in  the 
separator

In this way you build the solution top down with a backtrack search.  The problem with this approach is 
that the separators can be large and the list of goods and no-goods can grow to use all of the memory.



#BTD: Exact solution counting using the BTD. BTD is modified to perform exact solution counting in the 
#BTD algorithm.  Instead of recording goods/no-goods the number of solutions is recorded.  Otherwise, 
the process proceeds as for described above.

3 APPROXBTD

Problem  decomposition.   APPROXBTD uses  the  MAXCHORD algorithm  to  decompose  the  CSP  into 
independent subproblems:

• Importantly, the constraints are partitioned across the subproblems: each constraint appears in 
exactly one subproblem.

• Each variable is in at least one partition, but may appear in more than one.

• Each subproblem is chordal

Approximate Solution Counting: ApproxBTD.  Below, we call the size of a CSP the product of the sizes of 
its domain.  The authors introduce the following:

• The probability  of  an assignment of  all  the variables of  a subproblem being a solution in a 
subproblem is the ratio of the number of solutions in the subproblem (computed using #BTD) 
over the size of the subproblem.

• Assuming  that  the  subproblems are  independent  (which  is  an  approximation  and  does  not 
always  hold  because  the  same  variable  may  appear  in  more  than  one  subproblem),  the 
probability of a solution in the CSP is obtained by multiplying the probabilities of a solution in all 
subproblems.

• The number of solution of the CSP can be multiplying the probability of a solution in the CSP by 
the size of the CSP. 

• An upper bound on the number of solutions of the CSP is obtained by multiplying the smallest 
probability of a solution to a subproblem by the size of the original CSP.

Shant explained the meaning of the above parameters and motivated them with examples.

4 Discussion 

Some of the questions asked were as follows:
Q: What applications can benefit from counting the number of solutions?
A:  The  authors  identify  three  application  areas  (model  counting,  diagnostic,  etc.)  where  solution 
counting is important.  Dechter talked about her work on inference in Bayed nets during her visit to UNL, 
but we have not studied that in details.  In modeling a real world, imagine a situation where the number 
of solutions of a model can be related to the quality of the model.  You may have several models and 
you want find the number of solutions to each model to get an approximation of the quality of the 
model.  Also, in diagnostics, if you observe a certain behavior it is useful to know how many possibilities 
this behavior entails.

Q: Is there a better way to get an upper bound by pre-processing the CSP in some way?



A:  Yes,  running  arc  consistency  or  some  other  local  consistency  method  before  creating  the  tree 
decomposition may eliminate some inconsistent solutions.

Comment: The MAXCHORD [Dearing et al., 88] is an interesting (but complicated) paper to study.


	1. Summary of idea & main results
	2 BTD and #BTD
	3 ApproxBTD
	4 Discussion 

