Symmetries in CSP

Elena Sherman

UNL, CSE

April 18, 2009
Table of contents

Why Symmetry?

Symmetry Examples

Approaches for Symmetrical CSPs
 Adding symmetry-breaking global contraints
 Search space modification
 Heuristics modification

Historical Note
Symmetries in CSP

— Why Symmetry?

Contents

Why Symmetry?

Symmetry Examples

Approaches for Symmetrical CSPs
 Adding symmetry-breaking global constraints
 Search space modification
 Heuristics modification

Historical Note
What is Symmetry?

Symmetry

- Defined as “patterned self-similarity”.
- Generated by a transformation S of an object O_1 into O_2.
- $S(O_1)$ is not distinguishable from O_2.
- Common S are translation, rotation and reflection.
Crafting a Paper Snowflake

How to cut out a snowflake from a piece of paper?
Crafting a Paper Snowflake

How to cut out a snowflake from a piece of paper?
Crafting a Paper Snowflake

How to cut out a snowflake from a piece of paper?
In general biological science problems have many geometric symmetries.
Why is Symmetry?

- CSP = (V, D, C) ∈ NPC, but ∃ islands of tractability.
- Using the structure of CSP to reduce complexity, or to reduce the problem size.
- Symmetry can occur in V, D and C ex. ALL-DIFF constraint.
- CSP’s elements that are symmetric under S create an equivalence class.
- Property detected in one element of an equivalent class can be generalized to all elements of that class. Ex.
 \[D = \{1, 2, 3, 4, 5, 6, 7\} \Rightarrow D = \{[2, 4, 6], [3, 5, 7]\}. \]
Contents

Why Symmetry?

Symmetry Examples

Approaches for Symmetrical CSPs
 Adding symmetry-breaking global contraints
 Search space modification
 Heuristics modification

Historical Note
5-queens Symmetry Example $S = 180$ Rotation

\begin{tabular}{|c|c|c|c|c|}
\hline
x_1 & 1 & 2 & 3 & 4 & 5 \\
\hline
x_2 & 1 & 2 & 3 & 4 & 5 \\
\hline
x_3 & 1 & 2 & 3 & 4 & 5 \\
\hline
x_4 & 1 & 2 & 3 & 4 & 5 \\
\hline
x_5 & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}
5-queens Symmetry Example $S = 180$ Rotation

- Rotate by 180 degrees.
5-queens Symmetry Example \(S = 180 \) Rotation

- Rotate by 180 degrees.
5-queens Symmetry Example $S = 180$ Rotation

- Rotate by 180 degrees.
- x_1 exchanges with x_5 and x_2 with x_4.
- New domains $\theta(val) = 6 - val$ for each x_i.
- Equivalence classes:
 - Variables $\{x_1, x_2\}$, $\{x_2, x_4\}$ and $\{x_3\}$.
 - Values $\{1, 5\}$, $\{2, 4\}$, $\{3\}$.
5-queens Symmetry Example $S = 180$ Rotation

- Rotate by 180 degrees.
- x_1 exchanges with x_5 and x_2 with x_4.
- New domains $\theta(val) = 6 - val$ for each x_i.
- Equivalence classes:
 - Variables $\{x_1, x_2\}$, $\{x_2, x_4\}$ and $\{x_3\}$.
 - Values $\{1, 5\}$, $\{2, 4\}$, $\{3\}$.
- Reflection about the horizontal axis and vertical axis.
5-queens Symmetry Example $S = 180$ Rotation

- Rotate by 180 degrees.
- x_1 exchanges with x_5 and x_2 with x_4.
- New domains $\theta(val) = 6 - val$ for each x_i.
- Equivalence classes:
 - Variables $\{x_1, x_2\}$, $\{x_2, x_4\}$ and $\{x_3\}$.
 - Values $\{1, 5\}$, $\{2, 4\}$, $\{3\}$.
- Reflection about the horizontal axis and vertical axis.
- Rotation by 360? Rotation by 90?
5-queens - Different Formulation

\[
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 \\
16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 \\
\end{array}
\]

- \(X = \{x_1, x_2, x_3, x_4, x_5\} \)
- \(D = \{1, 2, \ldots, 25\} \)
- What are the symmetries here? Do they include domains, variables or both?
5-queens - Different Formulation

- $X = \{x_1, x_2, x_3, x_4, x_5\}$
- $D = \{1, 2, \ldots, 25\}$
- What are the symmetries here? Do they include domains, variables or both?

<table>
<thead>
<tr>
<th>X</th>
<th></th>
<th></th>
<th></th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>16</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>
5-queens - Different Formulation

\[X = \{x_1, x_2, x_3, x_4, x_5\} \]

\[D = \{1, 2, \ldots, 25\} \]

What are the symmetries here? Do they include domains, variables or both?
5-queens - Different Formulation

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $X = \{x_1, x_2, x_3, x_4, x_5\}$
- $D = \{1, 2, \ldots, 25\}$

- What are the symmetries here? Do they include domains, variables or both?
5-queens - Different Formulation

\[X = \{ x_1, x_2, x_3, x_4, x_5 \} \]

\[D = \{ 1, 2, \ldots, 25 \} \]

What are the symmetries here? Do they include domains, variables or both?
5-queens - Different Formulation

\[X = \{x_1, x_2, x_3, x_4, x_5\} \]
\[D = \{1, 2, \ldots, 25\} \]

What are the symmetries here? Do they include domains, variables or both?

All 8 symmetries.
Formulation of CSP has Symmetry and not the Problem

- The definition of the symmetry applies to the definition of CSP and not to the problem itself.
- Different CSP’s formulations of the same problem can have different symmetries.
- What symmetry to select?
Formulation of CSP has Symmetry and not the Problem

- The definition of the symmetry applies to the definition of CSP and not to the problem itself.
- Different CSP’s formulations of the same problem can have different symmetries.
- What symmetry to select? What about one that produces the smallest number of equivalent classes?
Contents

Why Symmetry?

Symmetry Examples

Approaches for Symmetrical CSPs
 Adding symmetry-breaking global constraints
 Search space modification
 Heuristics modification

Historical Note
Three Approaches for Symmetrical CSPs

Adding symmetry breaking global constraints

- Adding global constraints to convert it to an asymmetrical CSP.

Modify search

- Pruning symmetric states as they appear in search.

Modify search heuristics

- Using symmetry-breaking rules to guide search.
Removing Symmetry from the Problem - Global Symmetry

- Puget [93] while developing PECOS tool.
- Symmetry can cause a combinatorial explosion of the search space.
- Arc-consistency AC is not adapted to symmetrical CSPs. Ex. Pigeon Hole problem.
- In symmetrical CSP a *permutation of the variables* map one solution onto another solution.
- Removing symmetrical solutions by adding a constraint - if $C \subseteq C'$ then $\text{Sol}(P') \subseteq \text{Sol}(P)$ - reduction.
- Add static symmetry breaking constraints - *an ordering constraint* $x_1 < x_2 < \cdots < x_n$ - and do AC after that.
Creating a Global Constraint

Example

- \(V = \{v_0, v_1, v_2\}, D = \{0, 1, 2\} \)
- \(C : v_0 \neq v_1 \land v_1 \neq v_2 \land v_2 \neq v_0 \)
- How many solutions?
Creating a Global Constraint

Example

- $V = \{v_0, v_1, v_2\}, D = \{0, 1, 2\}$
- $C : v_0 \neq v_1 \land v_1 \neq v_2 \land v_2 \neq v_0$
- How many solutions?
- Has a symmetry (permutation): $v_0 \rightarrow v_1, v_1 \rightarrow v_2, v_2 \rightarrow v_0$
Creating a Global Constraint

Example

- $V = \{v_0, v_1, v_2\}$, $D = \{0, 1, 2\}$
- $C : v_0 \neq v_1 \land v_1 \neq v_2 \land v_2 \neq v_0$
- How many solutions?
- Has a symmetry (permutation): $v_0 \rightarrow v_1$, $v_1 \rightarrow v_2$, $v_2 \rightarrow v_0$
- Adding $v_0 < v_1 < v_2$ - How many solutions?
General Direction

- Enforcing GAC on this global constraint reduces the problem.
- Depending on the decomposition of a problem GAC propagation can be NPC.
- In "other" constraint paper by Law at al. [CP07].
 - Proposed SigLex global constraint.
 - Its GAC propagation is \(P \).
 - But it prunes only some symmetric values in general cases.
Symmetry is Dynamic [Meseguer & Torras 2001]

- Symmetries holding at the initial states is a global symmetry.
Symmetry is Dynamic [Meseguer & Torras 2001]

<table>
<thead>
<tr>
<th>x_1</th>
<th>$-$</th>
<th>$-$</th>
<th>$-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_2</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>x_3</td>
<td>$-$</td>
<td>$-$</td>
<td>q</td>
</tr>
<tr>
<td>x_4</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>x_5</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

- Symmetries holding at the initial states is a global symmetry.
Symmetry is Dynamic [Meseguer & Torras 2001]

- Symmetries holding at the initial states is a global symmetry.
Symmetry is Dynamic [Meseguer & Torras 2001]

<table>
<thead>
<tr>
<th></th>
<th>x₁</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>x₃</td>
<td>-</td>
<td>-</td>
<td>q</td>
</tr>
<tr>
<td>x₄</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>x₅</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Symmetries holding at the initial states is a global symmetry.
Symmetry is Dynamic [Meseguer & Torras 2001]

- Symmetries holding at the initial states is a global symmetry.
- After an assignment to v_i the global symmetry may break.
Symmetry is Dynamic [Meseguer & Torras 2001]

- Symmetries holding at the initial states is a global symmetry.
- After an assignment to v_i the global symmetry may break.
Symmetry is Dynamic [Meseguer & Torras 2001]

- Symmetries holding at the initial states is a global symmetry.
- After an assignment to v_i, the global symmetry may break.
Symmetry is Dynamic [Meseguer & Torras 2001]

- Symmetries holding at the initial states is a global symmetry.
- After an assignment to v_i the global symmetry may break.
- Yet, new symmetries can appear in some states.
Symmetry is Dynamic

- Symmetries holding at the initial states is a global symmetry.
- After an v_i assignment the global symmetry can break.
- Yet, new symmetries can appear in some states.
- Symmetries can be broken and restored during the search.
Symmetry is Dynamic

- Symmetries holding at the initial states is a global symmetry.
- After an \(v_i \) assignment the global symmetry can break.
- Yet, new symmetries can appear in some states.
- Symmetries can be broken and restored during the search.
Pruning Symmetric States from Search

Symmetric Variables [Brown et al. 1989]

- Does not select vvp if vvp leads to a redundant partial assignment.
- Determines if a current partial assignment X is equivalent to a smaller assignment under a symmetry group G.
- Has pseudo code of the Backtracking Algorithm with Symmetries.
- Symmetries are given.
Pruning Symmetric States from Search

Symmetric Values [Freuder 1991]

- Only selects one *val* from equivalence class of values during *vvp* selection.
- Values a and b are neighborhood interchangeable if each *vvp* is consistent with their neighborhood.
- Algorithm to determine local value interchangeability is $O(n^2d^2)$.
- Symmetries are discovered.

```
Domain

Eq. class 1  Eq. class 2  Eq. class 3
```

![Diagram showing equivalence classes and their connections]
Symmetric Variables and Values [Backofen & Will CP99, Gent & Smith 2000]

- Does not interfere with the heuristic searches (variable ordering).
- Adds symmetry breaking constraints to the right branches of search tree.

$x_1 = 2, x_2 = 3$ - backtracking
Symmetric Variables and Values [Backofen & Will CP99, Gent & Smith 2000]

- Does not interfere with the heuristic searches (variable ordering).
- Adds symmetry breaking constraints to the right branches of search tree.

\[x_1 = 2, x_2 = 3 - \text{backtracking} \]
\[x_1 = 2, x_2 \neq 3 - \text{should we consider } x_4 = 3? \]
Symmetric Variables and Values [Backofen & Will CP99, Gent & Smith 2000]

- Does not interfere with the heuristic searches (variable ordering).
- Adds symmetry breaking constraints to the right branches of search tree.

$x_1 = 2, x_2 = 3$ - backtracking

$x_1 = 2, x_2 \neq 3$ - should we consider $x_4 = 3$? Depends if $x_5 = 5$ or not

If $x_5 \neq 5$ then $x_2 = 3$ and $x_3 = 3$ are not equivalent. Generally it is not known if $x_5 = 5$ or $x_5 \neq 5$.

Adding a conditional constraint $x_1 = 1 \land x_2 \neq 3 \land x_5 = 5 \Rightarrow x_4 \neq 3$.
Use Symmetry to Guide Search

Dynamic Variable Ordering [Meseguer & Torras 2001]

- Direct search toward subspaces with many non-symmetric states.
- Selecting \(vvp \) that breaks the most of the symmetries.
- It will lead to more evenly distributed solutions in the CSP’s state space.
- More about it in my project presentation.
Contents

Why Symmetry?

Symmetry Examples

Approaches for Symmetrical CSPs
 Adding symmetry-breaking global contraints
 Search space modification
 Heuristics modification

Historical Note
Avoiding symmetric path in search [Glaischer 1874, Brown et al. 1989]

Value interchangeability [Freuder 1991]

Symmetry breaking constraints [Puget 93, Backofen & Will 99]

Discovering symmetries
 - Equivalent to graph isomorphism.
 - Complexity unknown (P? NPC?)
 - Discover symmetry generators with Nauty, Saucy, AUTOM

Rolf Backofen and Sebastian Will. Excluding symmetries in constraint-based search.

Darga et al. Saucy.
http://vlsicad.eecs.umich.edu/BK/SAUCY.
Bibliography II

Eugene C. Freuder.
Eliminating interchangeable values in constraint satisfaction problems.

J.W.L. Glaisher.
On the Problem of the Eight Queens.

Ian P. Gent and Barbara M. Smith.
Symmetry breaking in constraint programming.

Breaking symmetry of interchangeable variables and values.
Bibliography III

Brendan MacKay.
Nauty.

Pedro Meseguer and Carme Torras.
Exploiting symmetries within constraint satisfaction search.

Jean-Francois Puget.
On the satisfiability of symmetrical constrained satisfaction problems.

Jean-Francois Puget.
Automatic Detection of Variable and Value Symmetries, 2005.