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Directional consistency

Chapter 4
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Backtrack-free search: or
What level of consistency will guarantee global-
consistency
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Directional arc-consistency:
another  restriction on propagation

D4={white,blue,black}
D3={red,white,blue}
D2={green,white,black}
D1={red,white,black}
X1=x2, x1=x3,x3=x4
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Directional arc-consistency:
another  restriction on propagation

D4={white,blue,black}
D3={red,white,blue}
D2={green,white,black}
D1={red,white,black}
X1=x2, x1=x3, x3=x4

After DAC: 
D1= {white},
D2={green,white,black},
D3={white,blue},
D4={white,blue,black}
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Algorithm for directional arc-
consistency (DAC)

)( 2ekOComplexity: 
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Directional arc-consistencymay not be enough 
Directional path-consistency
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Algorithm directional path consistency (DPC)
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Directional  i-consistency
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Algorithm directional i-consistency
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Graph aspects of DPC

DPC recursively connects parents in the 
ordered graph, yielding:
• Induced graph
• Induced-width
• Min-width ordering
• Max-cardinality ordering
• Min-fill ordering
• Chordal graphs
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The induced-width

width: is the max number of parents in the ordered graph
Induced-width: width of induced graph: recursivlely connecting parents going from 
last node to first.
Induced-width w*(d) = the max induced-width over all nodes
Induced-width of a graph: max w*(d) over all d
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Example 4.1: Figure 4.1 presents a constraint graph G over 
six nodes, along with three orderings of the graph: d1 = 
(F,E,D,C,B,A), its reversed ordering d2 = (A,B,C,D,E, F), and 
d3 = (F,D,C,B,A,E). Note that we depict the orderings from 
bottom to top, so that the first node is at the bottom of the 
figure and the last node is at the top. The arcs of the graph 
are depicted by the solid lines. The parents of A along d1 are 
{B,C,E}. The width of A along d1 is 3, the width of C along d1
is 1, and the width of A along d3 is 2. The width of these 
three orderings are: w(d1) = 3, w(d2) = 2, and w(d3) = 2. The 
width of graph G is 2.
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Induced-width
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Induced-width and DPC

The induced graph of (G,d) is denoted  (G*,d)

The induced graph (G*,d) contains the graph 
generated by DPC along d, and the graph 
generated by directional consistency along d
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Refined Complexity using induced-width

Consequently we wish to have ordering with minimal 
induced-width
Induced-width = tree-width
Finding min induced-width ordering is NP-complete
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Min-width ordering
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Min-induced-width
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Min-fill algorithm

Prefers a node who add the least 
number of fill-in arcs.
Empirically, fill-in is the best among the 
greedy algorithms (MW,MIW,MF,MC)
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Cordal graphs and Max-
cardinality ordering

A graph is cordal if every cycle of length at 
least 4 has a chord
Finding w* over chordal graph is easy using 
the max-cardinality ordering
If G* is an induced graph it is chordal
K-trees are special chordal graphs.
Finding the max-clique inchordal graphs is 
easy (just enumerate all cliques in a max-
cardinality ordering
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Example 4.3:  We see again that G in Figure 
4.1(a) is not chordal since the parents of A are 
not connected in the max-cardinality ordering in 
Figure 4.1(d). If we connect B and C, the 
resulting induced graph is chordal.
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Max-cardinality ordering

Figure 4.5  The max-cardinality (MC) ordering procedure.
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Width vs local consistency:
solving trees
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Tree-solving

)(: 2nkOcomplexity
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Width-2 and DPC
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Width vs directional consistency
(Freuder 82)
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Width vs i-consistency

DAC and width-1
DPC and width-2
DIC_i and with-(i-1)

backtrack-free representation

If a problem has width i-1, will DIC_i make it 
backtrack-free?
Adaptive-consistency: applies i-consistency 
when i is adapted to the number of parents
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Adaptive-consistency
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The Idea of Elimination  

project and join  E variableEliminate
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Adaptive-consistency, bucket-elimination
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Bucket Elimination
Adaptive Consistency (Dechter and Pearl, 1987) 
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Properties of bucket-elimination
(adaptive consistency)

Adaptive consistency generates a constraint network 
that is backtrack-free (can be solved without dead-
ends).

The time and space complexity of adaptive consistency 
along ordering d is                                        respectively, 
or O(r k^(w*+1)) when r is the number of constraints.

Therefore, problems having bounded induced width are 
tractable (solved in polynomial time)

Special cases: trees ( w*=1 ), series-parallel networks
(w*=2 ),  and in general k-trees  ( w*=k ).

 1*w1*w (k) O(n),(2k) O(n ++ 
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Back to Induced width

Finding minimum-w*      ordering is NP-
complete   (Arnborg, 1985)
Greedy ordering heuristics: min-width, min-degree, 
max-cardinality (Bertele and Briochi, 1972; Freuder 
1982), Min-fill.
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Solving Trees 
(Mackworth and Freuder, 1985)

Adaptive consistency is linear for trees and
equivalent to enforcing directional arc-consistency 
(recording only unary constraints)
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Summary: directional i-consistency
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Variable Elimination 

Eliminate 
variables
one by one:
“constraint
propagation”

Solution generation 
after elimination is 
backtrack-free

3
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