
Fall Semester, 2009 B.Y. Choueiry
CSCE 896-004: Basic Concepts and Algorithms in Constraint Processing

Homework 1

Generic Data Structures for Storing CSPs

Assigned: Friday, August 28, 2009

Due: Friday, September 4, 2009

Total value: 80 points

Contents

1 Help 1

2 Goal of the homework 2

3 General indications 2

4 Basic data structures 3
4.1 Main data structures . 3
4.2 Main functions/methods . 4

5 Loading and initializing a CSP instance 5

1 Help

If you have any questions, comments, or concerns, please let us know:

• Email us to cse421cse.unl.edu.

• Office hours of Shant (Student Resource Center): Tuesdays from 2:00 p.m. to 3:00 p.m.
Thursdays from 11:00 a.m. to 12:00 p.m., or by appointment.

• Office hours of Berthe (Student Resource Center): Mondays/Wednesdays from 1:30 p.m. to
2:30 p.m., or by appointment.

1

2 Goal of the homework

The goal of this homework is to write code for generating the data structures and accessor functions
that will allow you to implement (most) CSP instances, and to test your implementation by reading
examples from files. This implementation may need to be refined as we progress in the course, but
at least the basic building-blocks for initializing, storing, and manipulating CSP instances should
be available. It is very important that you take this task seriously and do the implementation as
clearly and neatly as possible: future homework will build upon this code. If you notice any errors
in the design or the description, please quickly mention them to the instructor as you encounter
them. This homework has two parts:

1. Creating the basic data structures. (50 points)

2. Generating the encoding of a CSP instance by (30 points)
reading and parsing the data from an XML file written in XCSP 2.1 format.

3 General indications

Please read carefully the general indications below before you start working on the homework. They
apply for the entire semester.

• Make sure that your code and your files are protected. Your name, date, and course number
must be listed on the top of each file that you submit.

• All programs must be compiled, run and tested on cse.unl.edu. Programs that do not run
correctly in this environment will not be accepted unless prior approval is obtained.

• A README file must be submitted. Otherwise, the entire homework is declared invalid. The
README file should describe the content and purpose of the submitted files, and have ALL
the necessary steps to compile and run the program.

• This homework must be done individually. If you collaborate with a colleague, include all
information about your source in the README file.

• If you receive help from anyone, you must clearly acknowledge it in the README file.

• Always acknowledge sources of information (URL, book, class notes, etc.) in the README
file.

• You can use the programming language of your choice. We are not able to provide much
programming/debugging help. You must check your results with colleagues by listing your
results on the wiki and comparing them with those of your colleagues.

• Inform instructor quickly about typos or other errors that may appear in the specifications
or the files made available online.

2

4 Basic data structures

Below we specify (as best we can) the data structures needed for storing the encoding of a CSP.
When generating an encoding, we will generate instances of those general data structures. Note
that:

• We will restrict ourselves to binary CSPs. Students looking for a real challenge may want to
consider generalizing their code, now or later, to non-binary CSPs.

• If you have a better idea for implementing your data structures, then you should experiment
with it, and consider the data structures below as mere recommendations.

• It is very important that you do not mix the data structures used for storing a CSP instance
with the data structures of the solver (in this case, search) used for solving the CSP.

4.1 Main data structures

The design requires primarily the choice of a linked list or an array to hold the variables, constraints
and the domains of the variables. This decision may have a drastic impact on the performance of
the algorithms. Use your judgement to make your choice of the data structures. Depending on the
design of your algorithms, you might revise your decisions at a later stage.

1. Problem instance. Create a data-structure for storing a CSP instance. This data structure
should have the following fields:

• name: the name of the problem, generates one randomly at initialization if none is
provided.

• variables: pointer to the structure holding the variables.

• constraints: pointer to the structure holding the constraints.

2. Variables. Create a data structure for storing the CSP variables.

Each variable must have the following fields:

• name: the variable name or identifier.

• initial-domain: values in the domain of the variable.

• constraints: pointers to the constraints that apply to the variable (i.e., constraints in
the scope of which that variable appears).

• neighbors: pointers to the other variables that share a constraint with this variable.

3. Constraints. Data structure holding all the constraints in the CSP. Each constraint may
require different fields depending on its specification, as in extension or intension:

(a) A constraint defined in extension as a set of allowable tuples (a.k.a. supports).

3

(b) A constraint defined in extension as a set of no-goods (a.k.a. conflicts).

(c) A constraint defined in intension, as a function to be implemented by a method.

The constraint should have the following fields:

• name: the name of the constraint.

• variables: pointers to the variables in the scope of the constraint.

• definition: stores the definition of a constraint. If the constraint is defined in intension,
this field should point to the function that defines the constraint.

If the constraint is defined in extension, then it has a list of tuples that are either supports
or conflicts. For instance:

CV1,V2 = {(1, 2), (3, 5), (2, 3)} (1)

is a constraint with three tuples: (1, 2), (3, 5), (2, 3). These tuples may be stored in a
list, in a two dimensional array, or a bit matrix. The bitmap should be of size d2 (binary
matrix), where d is the max domain-size (more generally, the size is dk, where k is the
max constraint arity). The values of the bitmap should be ‘0”s in all positions except
for the positions: (1, 2), (3, 5), (2, 3), should be ‘1’s.

4.2 Main functions/methods

Provide methods to print on the screen the variables and the constraints.
For each variable the following information should be printed:

1. The name of the variable.

2. The name(s) of the constraint(s) that apply to the variable.

3. The values in the domain of the variable.

For each constraint print the following information:

1. The name of the constraint.

2. The names of the variables that are in the scope of the constraint.

3. The way the constraint is defined, i.e. extension-supports, extension-conflicts, or intension.

4. The list of tuples in the definition of the constraint or the name of the function in case of
intension.

4

5 Loading and initializing a CSP instance

The tasks here are to:

1. Use or write a parser that loads any file of a CSP instance in the XCSP 2.1 format (see below)
.

2. Load the 16 problem instances in XCSP 2.0 provided by the instructor:
http://cse.unl.edu/~choueiry/CSPTestInstances/.

3. Print the variables and constraints as specified above.

4. Test your code by loading various benchmark problems, which are in XCSP 2.1 format:
http://cse.unl.edu/ choueiry/CSPTestInstances/

You are requested to read description of a CSP instances specified in the XML XCSP 2.1 format
and generate an encoding of it according to the data structures you have defined above. You can
interface your code with one of the two parsers available online or write your own parser. Familiarize
yourself with the content of the following web pointers, which are very useful:

• Most of the resources are available from http://www.cril.univ-artois.fr/~lecoutre/

• XCSP 2.1 format:
http://www.cril.univ-artois.fr/~lecoutre/research/benchmarks/benchmarks.html#format

• Online parsers:
http://www.cril.univ-artois.fr/~lecoutre/research/tools/tools.html#parsing

• Online tools:
http://www.cril.univ-artois.fr/~lecoutre/research/tools/tools.html

• Benchmark problems:
http://www.cril.univ-artois.fr/~lecoutre/research/benchmarks/benchmarks.html

You may notice that parsers are provided for Java and C/C++. If you chose an alternative
programing language, you may either consider using the parser to parse the XML file to an
intermediate representation of your convenience and then load it to your program, or write a
parser using XML parsing tools in the language you are using.

5

