Problem: A proof by contradiction, using cases
Prove that if n is a positive integer, then $n^2 + 3n + 2$ is even.

Answer: The proof is done using contradiction and cases.
The statement to prove is the following:

If n is a positive integer, then $n^2 + 3n + 2$ is even.

It is of the form $p \rightarrow q$, whose negation is $p \land \neg q$. Thus, we assume that:

- n is positive integer (which p), and
- $n^2 + 3n + 2$ is odd (which $\neg q$).

Then, we show that the above yields a contradiction, which will prove the original statement.

$n^2 + 3n + 2$ is odd \Rightarrow
n^2 + 3n + 2$ can be written as $2m + 1$ for some integer m ($m \in \mathbb{Z}$) \Rightarrow
n^2 + 3n + 2 = 2m + 1 \Rightarrow
n^2 + 3n = 2m - 1$ (moving 2 to the right-hand side) \Rightarrow
n^2 + 3n - 2m = -1$ (moving 2m to the left-hand side) \Rightarrow
n(n + 3) - 2m = -1$ (factoring out n)

Case 1: n is odd. n is odd \Rightarrow $(n + 3)$ is even \Rightarrow $n(n + 3)$ is even.

Case 2: n is even. n is even \Rightarrow $n(n + 3)$ is even

Thus, in all possible cases, $n(n + 3)$ is even \Rightarrow $n(n + 3) = 2k$ for some $k \in \mathbb{Z}$.

From above, we have $n^2 + 3n + 2$ is odd \Rightarrow
\[n(n + 3) - 2m = -1 \Rightarrow 2k - 2m = -1 \Rightarrow 2(k - m) = -1 \text{ where } (k - m) \in \mathbb{Z}, \text{ which is a contradiction be it says that an even integer is equal -1.} \]

We have shown that the negation of the statement to prove yields a contradiction. In conclusion, the statement holds. \square

Problem: Proof by cases. Prove that \(n^4 - n^2 \) is divisible by 3 for all \(n \in \mathbb{N} \).

Answer: To show that \(n^4 - n^2 \) is divisible by 3, we consider three cases:

1. \(n = 3k \),
2. \(n = 3k + 1 \), and
3. \(n = 3k + 2 \),

where \(k \in \mathbb{N} \). The three cases cover all possible numbers in \(\mathbb{N} \). So, we will show the proof by cases.

Case 1: \(n = 3k \).

\[
\begin{align*}
n^4 - n^2 &= n^2(n^2 - 1) \\
&= (3k)^2((3k)^2 - 1) \\
&= 3(3k^2((3k)^2 - 1)).
\end{align*}
\]

Since this number is a multiple of 3, it is divisible by 3. Thus, we have shown that for \(n = 3k \), \(n^4 - n^2 \) is divisible by 3.

Case 2: \(n = 3k + 1 \).

\[
\begin{align*}
n^4 - n^2 &= n^2(n^2 - 1) \\
&= (3k + 1)^2((3k + 1)^2 - 1) \\
&= (3k + 1)(3k + 1)((3k + 1)(3k + 1) - 1) \\
&= (9k^2 + 6k + 1)(9k^2 + 6k + 1 - 1) \\
&= (9k^2 + 6k + 1)(9k^2 + 6k) \\
&= (9k^2 + 6k)(9k^2 + 6k + 1) \\
&= 3(3k^2 + 2k)(9k^2 + 6k + 1).
\end{align*}
\]

Since this number is a multiple of 3, it is divisible by 3. Thus, we have shown that for \(n = 3k + 1 \), \(n^4 - n^2 \) is divisible by 3.
Case 3: \(n = 3k + 2 \).

\[
\begin{align*}
 n^4 - n^2 &= n^2(n^2 - 1) \\
 &= (3k + 2)^2((3k + 2)^2 - 1) \\
 &= (3k + 2)(3k + 2)((3k + 2)(3k + 2) - 1) \\
 &= (9k^2 + 12k + 4)(9k^2 + 12k + 4 - 1) \\
 &= (9k^2 + 12k + 4)(9k^2 + 12k + 3) \\
 &= (9k^2 + 12k + 3)(9k^2 + 12k + 4) \\
 &= 3(3k^2 + 4k + 1)(9k^2 + 12k + 4).
\end{align*}
\]

Since this last number is a multiple of 3, it is divisible by 3. Thus, we have shown that for \(n = 3k + 2 \), \(n^4 - n^2 \) is divisible by 3.

Therefore, we have shown that for all cases, \(n^4 - n^2 \) is divisible by 3.

Problem: Problem 2.1.9 from textbook

Determine whether each of these statement is T or F.

a) \(x \in \{x\} \)
b) \(\{x\} \subseteq \{x\} \)
c) \(\{x\} \in \{x\} \)

Answer: Answer is in textbook.

Problem: Problem 2.1.31 from textbook

Explain why \(A \times B \times C \) and \((A \times B) \times C \) are not the same.

Answer: Answer is in textbook.

Problem: Problem 2.2.26 from textbook

Draw the Venn diagrams for each of these combinations of the sets \(A, B, \) and \(C \).

1. \(A \cap (B \cup C) \)
2. \(\bar{A} \cap \bar{B} \cap \bar{C} \)
3. \((A - B) \cup (A - C) \cup (B - C) \)
Answer: Answer is in the handwritten recitation notes of Week7 of the GTA.

Problem: Problem 2.2.32 from textbook
Find the symmetric difference of \{1, 3, 5\} and \{1, 2, 3\}.

Answer: Answer is in the handwritten recitation notes of Week7 of the GTA.

Problem: Problem 2.2.40 from textbook
Determine whether the symmetric different is associative; that is, if \(A, B, \text{ and } C\) are sets, does it follow that \(A \oplus (B \oplus C) = (A \oplus B) \oplus C\)?

Answer: Answer is in the handwritten recitation notes of Week7 of the GTA.