Overview

- Defining Propositional Logic
 - Propositions
 - Connectives
 - Truth tables
- Precedence of Logical Operators
- Usefulness of Logic
 - Bitwise operations
 - Logic in Theoretical Computer Science (SAT)
 - Logic in Programming
- Logical Equivalences
 - Terminology
 - Truth tables
 - Equivalence rules

Propositions

What is Proposition:

A declarative sentence that is either true or false, but not both. Examples:

- Which of these sentences are propositions?
 What are the truth values of those that are proposition?
 - a) Boston is the capital of Massachusetts.

```
yes, T
```

b) Miami is the capital of Florida.

```
yes, F
```

Which of these sentences are propositions?
 What are the truth values of those that are proposition?

```
- c) 2+3 =5 (yes. T)
```

$$-d) 5+7 = 10$$
 (yes. F)

$$-e) x+2 = 11$$
 (No.)

f) Answer this question. (No.)

 Determine whether each of these conditional statements is true or false.

$$-$$
 If $1+1=2$, then $2+2=5$. (F)

$$-$$
 If $1+1=3$, then $2+2=4$. (T)

$$-$$
 If $1+1=3$, then $2+2=5$. (T)

- If monkeys can fly, then 1+1=3 (T)

Converse, Inverse, Contrapositive

- Consider the proposition $p \rightarrow q$
 - Its converse is the proposition $q \rightarrow p$
 - Its <u>inverse</u> is the proposition $\neg p \rightarrow \neg q$
 - Its contrapositive is the proposition $\neg q \rightarrow \neg p$

- a)
$$p \wedge \neg q$$

p	q	$p \wedge \neg q$

- a)
$$p \wedge \neg q$$

p	q	$p \wedge \neg q$
0	1	0
1	0	0

$$- c) (p \lor \neg q) \rightarrow q$$

р	q	$\neg q$	<i>p</i> ∨ ¬ <i>q</i>	$(p \lor \neg q) \to q$
0	0			
0	1			
1	0			
1	1			

$$- c) (p \lor \neg q) \rightarrow q$$

р	q	$\neg q$	<i>p</i> ∨ ¬ <i>q</i>	$(p \lor \neg q) \to q$
1	1	0	1	1
1	0	1	1	0
0	1	0	0	1
0	0	1	1	0

Logical Equivalences: Ex1.2:3

 Use truth tables to verify the commutative laws.

$$-$$
 a) $\boldsymbol{p} \vee \boldsymbol{q} \equiv \boldsymbol{q} \vee \boldsymbol{p}$

р	q	p∨q	q∨p
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

The two columns in the truth table are identical, thus we conclude that

$$p \vee q \equiv q \vee p$$