Homework 06

Due Oct 13, 2007

Name	CSE Login

Instructions Follow instructions carefully, failure to do so may result in points being deducted.

- The homework can be submitted on paper or via handin. Homework neatly formatted in LaTeX will receive a 10 point bonus. You will not receive the 10 points bonus if you work with a partner (see below).
- Clearly label each problem and submit the answers in order.
- Staple this cover page to the front of your assignment for easier grading.
- Late submissions will not be accepted.
- Show sufficient work to justify your answer(s). Sloppy, hard to read papers will not be graded (please have mercy...).
- When you are asked to prove something, you must give as formal, rigorous, and complete a proof as possible.
- You are to work individually, and all work should be your own. Check partner policy below.
- The CSE academic dishonesty policy is in effect (see http://www.cse.unl.edu/undergrads/academic_integrity.php).

Partner Policy You may work in pairs, but you must follow these guidelines:

- 1. You must work on all problems together. You may not simply partition the work between you.
- 2. You must use LATEX and you may divide the typing duties however you wish.
- 3. You may not discuss problems with other groups or individuals.
- 4. Hand in only one hard copy under the first author's name.

Problem	Page	Points	Score
2.3.2	146	6	
2.3.4 (please read (b) carefully)	146	8	
2.3.18	147	8	
2.3.24	147	7	
2.3.30	147	10	
2.3.36	147	10	
Problem A	See next page	9	
Problem B	See next page	20	
Problem C	See next page	12	
Total		90	
Typesetting in LATEX (bonus)		10	

Problem A (2.3.10) Let $f:\{a,b,c,d\} \rightarrow \{a,b,c,d\}$, for each of function f below,

1.
$$f(a) = b$$
, $f(b) = a$, $f(c) = c$, $f(d) = d$.

2.
$$f(a) = b$$
, $f(b) = b$, $f(c) = d$, $f(d) = c$.

3.
$$f(a) = d$$
, $f(b) = a$, $f(c) = c$, $f(d) = d$.

- 1. Determine whether f is one-to-one (injective).
- 2. Determine whether f is onto (surjective).
- 3. Determine whether f is one-to-one correspondence (bijective).

Problem B (2.3.12) Let $f: \mathbb{Z} \to \mathbb{Z}$, For each function f below:

1.
$$f(n) = n - 1$$
.

2.
$$f(n) = n^2 + 1$$
.

3.
$$f(n) = n^3$$
.

4.
$$f(n) = \lceil \frac{n}{2} \rceil$$
.

- 1. Determine whether f is one-to-one (injective).
- 2. Determine whether f is onto (surjective).
- 3. Determine whether f is one-to-one correspondence (bijective).
- 4. Determine whether f is invertible. If so, give f^{-1} . If not, give the largest domain for which f is invertible and find f^{-1} .

Problem C (2.3.32) For functions $f(x) = x^2 + 1$ and g(x) = x + 2 from \mathbb{R} to \mathbb{R} , find

1.
$$f \circ g$$

2.
$$g \circ f$$

3.
$$f \circ f$$

4.
$$g \circ g$$