3. List the ordered pairs in the relations on \(\{1, 2, 3\} \) corresponding to these matrices (where the rows and columns correspond to the integers listed in increasing order).

a) \[
\begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix}
\]
\((1, 1), (1, 2), (2, 2), (3, 1), (3, 3) \)

b) \[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\]
\((1, 2), (2, 2), (3, 2) \)

c) \[
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix}
\]
\((1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2), (3, 3) \)
13. Let R be the relation represented by the matrix M_R:

$$M_R = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Find the matrix representing:

a) R^1

Sol: $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

b) R^\top

Sol: $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

c) R^2

Sol: $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

3. Let R be the relation $\{ (a, b) | a \text{ divides } b \}$ on the set of integers. What is $R \cup R^\top$?

Solution: $R \cup R^\top = \{ (a, b) | a \text{ divides } b \text{ or } b \text{ divides } a \}$
8.1.3: Let \(S = \{1, 2, 3, 4\} \). Determine whether each relation \(R \) on \(S \) has the listed properties.

\[
R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}
\]

Question 1: Draw the 0-1 matrix representation of \(R \).

Solution:

\[
\begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Question 2: Draw the digraph representation of \(R \).

Solution:

\[
\begin{array}{cc}
1 & \quad 4 \\
2 & \quad 3
\end{array}
\]

3. Is \(R \) symmetric?

 Yes

4. Is \(R \) transitive?

 Yes

5. Is \(R \) reflexive?

 Yes
8.9. Suppose that \(A \) is a nonempty set, and \(f \) is a function that has \(A \) as its domain. Let \(R \) be the relation on \(A \) consisting of all ordered pairs \((x,y)\) such that \(f(x) = f(y) \).

a) Show that \(R \) is an equivalence relation on \(A \).

solution: \((x,x) \in R\) because \(f(x) = f(x) \).

Hence, \(R \) is reflexive.

\((x,y) \in R\) iff \(f(x) = f(y) \), which holds iff \(f(y) = f(x) \) if \((y, x) \in R\).

Hence, \(R \) is symmetric.

If \((x,y) \in R\), and \((y,z) \in R\), then \(f(x) = f(y) \) and \(f(y) = f(z) \). Hence, \(f(x) = f(z) \). Thus, \((x,z) \in R\).

It follows that \(R \) is transitive.

b) What are the equivalence classes of \(R \)?

the sets \(f^{-1}(b) \) for \(b \) in the range of \(f \).
Which of these relations on the set of all functions from \(\mathbb{Z} \) to \(\mathbb{Z} \) are equivalence relations? Determine the properties of an equivalence relation that the others lack.

(a) \[\{(f, g) \mid f(1) = g(1)\} \]

Solution: It is reflexive. Transitive.

- if we have \(f \mathrel{R} g \), i.e. \(f(1) = g(1) \)
 and \(g \mathrel{R} h \), i.e. \(g(1) = h(1) \)
 then we will have \(f(1) = g(1) = h(1) \Rightarrow f(1) = h(1) \)
 then we have \(f \mathrel{R} h \).

- It is reflexive.

- if we have \(f \mathrel{R} g \), i.e. \(f(1) = g(1) \)
 then we will have \(g(1) = f(1) \), which implies \(g \mathrel{R} f \).

So, if \(f \mathrel{R} g \), then \(g \mathrel{R} f \). It is symmetric.

Since \(R \) has all three properties, it is an equivalence relation.
\(b \) \quad \{ (f, g) \mid f(0) = g(0), \text{ or } f(1) = g(1) \}.

Solution: \(R \) is reflexive:

\[\because \text{ we have } f(0) = f(0) \text{ or } f(1) = f(1) \quad \Rightarrow \quad R \text{ is reflexive.} \]

\[\rightarrow \text{ It is symmetric.} \]

\[\because \text{ if we have } \ f \ R \ g \text{, i.e., } f(0) = g(0) \text{ or } f(1) = g(1) \]

\[\text{then we have } \ g \ R \ f \text{, i.e., } g(0) = f(0) \text{ or } g(1) = f(1). \]

\[\therefore \text{ } R \text{ is symmetric.} \]

\[\rightarrow \text{ It is not transitive.} \]

\[\because \text{ if we have } \ f \ R \ g \text{, i.e., } f(0) = g(0) \text{ or } f(1) = g(1) \]

\[\text{and } \ g \ R \ h \text{, i.e., } g(0) = h(0) \text{ or } g(1) = h(1) \]

\[\therefore \text{ Counter example is,} \]

\[\text{when } \ f(0) = g(0) \wedge f(1) = g(1) \text{ i.e., } f \ R \ g \]

\[g(0) = h(0) \wedge g(1) = h(1) \text{ i.e., } g \ R \ h. \]

\[\therefore \text{ we have } f(0) = h(0) \wedge f(1) = h(1) \]

\[\therefore \text{ Then, } f \ R \ h. \]

\[\therefore \text{ it is not transitive.} \]

\[\rightarrow \text{ Since } R \text{ does not have all three properties,} \]

\[\therefore \text{ it is not an equivalence relation.} \]
\[(f, g) \mid f(x) - g(x) \neq 0 \text{ for all } x \in \mathbb{R} \]

(c) \[(f, g) \mid f(x) - g(x) = 1 \text{ for all } x \in \mathbb{R} \]

Solution: \[\rightarrow \text{ It is not reflexive.} \]

- If we have \[f R f \text{, then we should have} \]
 \[f(x) - f(x) = 1 \text{ which is impossible.} \]
 \[\text{So, } R \text{ is not reflexive, which means } f R f. \]

\[\rightarrow \text{ It is not symmetric.} \]

- If we have \[f R g \text{, i.e. } f(x) - g(x) = 1 \]
 then, \[g(x) - f(x) = -1 \text{, which means } g \not\sim f \]

\[\rightarrow \text{ It is not transitive.} \]

- If we have \[f R g \text{, i.e. } f(x) - g(x) = 1 \]
 and we have \[g R h \text{, i.e. } g(x) - h(x) = 1 \]
 \[\Rightarrow f(x) - h(x) = 2 \]

\[\rightarrow \text{ It is not transitive.} \]

Since \[R \text{ does not have all three properties,} \]
then \[R \text{ is not an equivalence relation.} \]
P5.28 32. \(\varepsilon \subseteq \%

* For the following relations on the set of real numbers:

\[R_1 = \{(a, b) \in \mathbb{R}^2 \mid a > b\}, \text{ the "greater than" relation,} \]
\[R_2 = \{(a, b) \in \mathbb{R}^2 \mid a \geq b\}, \text{ the "greater than or equal to" relation,} \]
\[R_3 = \{(a, b) \in \mathbb{R}^2 \mid a < b\}, \text{ the "less than" relation,} \]
\[R_4 = \{(a, b) \in \mathbb{R}^2 \mid a \leq b\}, \text{ the "less than or equal to" relation,} \]
\[R_5 = \{(a, b) \in \mathbb{R}^2 \mid a = b\}, \text{ the "equal to" relation,} \]
\[R_6 = \{(a, b) \in \mathbb{R}^2 \mid a \neq b\}, \text{ the "unequal to" relation.} \]

Find:

\(a) R_2 \cup R_4 \]
= \(R^2 \)

\(b) R_3 \cup R_6 \]
= \(R_6 \quad (\because R_6 \text{ includes all relations in } R_3) \)

\(c) R_3 \cap R_6 \]
= \(R_3 \)

\(d) R_4 \cap R_6 \]
= \(\{(a, b) \in \mathbb{R}^2 \mid a \leq b\} \cap \{(a, b) \in \mathbb{R}^2 \mid a \neq b\} \]
= \(\{(a, b) \in \mathbb{R}^2 \mid a < b\} \]
= \(R_3 \)

\(e) R_3 - R_6 \]
= \(\{(a, b) \in \mathbb{R}^2 \mid a < b\} - \{(a, b) \in \mathbb{R}^2 \mid a \neq b\} \]
= \(\emptyset \)
(g) \[R_6 - R_3 \]
\[= \{ (a, b) \in \mathbb{R}^2 \mid a + b \leq 1 \} - \{ (a, b) \in \mathbb{R}^2 \mid a + b \geq 2 \} \]
\[= \{ (a, b) \in \mathbb{R}^2 \mid a > b \} \]
\[= R_1 \]

(g) \[R_2 \oplus R_6 \]
\[= \{ (a, b) \in \mathbb{R}^2 \mid a \geq b \} \oplus \{ (a, b) \in \mathbb{R}^2 \mid a + b \leq 1 \} \]
\[= \{ (a, b) \in \mathbb{R}^2 \mid a < b \} \]
\[= R_4 \]

(h) \[R_3 \oplus R_5 \]
\[= \{ (a, b) \in \mathbb{R}^2 \mid a < b \} \oplus \{ (a, b) \in \mathbb{R}^2 \mid a = b \} \]
\[= \{ (a, b) \in \mathbb{R}^2 \mid a < b \} \]
\[= R_4 \]