

Summations
CSE235
Introduction
Sequences

Summations Series

Sequences & Summations

Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry

Fall 2007

Computer Science & Engineering 235 Introduction to Discrete Mathematics Section 2.4 of Rosen

Sequences & Summations

Sequences & Summations CSE235

Introduction

Sequences

Summations

Series

Though you should be (at least intuitively) familiar with sequences and summations, we give a quick review.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Sequences

Sequences & Summations CSE235

Introduction

Sequences

Summations

Series

Definition

A sequence is a function from a subset of integers to a set S. We use the notation(s):

$$\{a_n\} \quad \{a_n\}_n^\infty \quad \{a_n\}_{n=0}^\infty \quad \{a_n\}_{n=0}^\infty$$

Each a_n is called the *n*-th *term* of the sequence.

We rely on context to distinguish between a sequence and a set; though there is a connection.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sequences Example

Sequences & Summations CSE235

Introduction

Sequences

Summations

Series

Example

Consider the sequence

$$\left\{ \left(1+\frac{1}{n}\right)^n \right\}_{n=1}^{\infty}$$

The terms are

$$a_{1} = (1+1)^{1} = 2.00000$$

$$a_{2} = (1+\frac{1}{2})^{2} = 2.25000$$

$$a_{3} = (1+\frac{1}{3})^{3} = 2.37037$$

$$a_{4} = (1+\frac{1}{4})^{4} = 2.44140$$

$$a_{5} = (1+\frac{1}{5})^{5} = 2.48832$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

What is this sequence?

Sequences

Sequences Example II

Sequences & Summations CSE235

Introduction

Sequences

Summations

Series

Example

The sequence

$$\{h_n\}_{n=1}^{\infty} = \frac{1}{n}$$

is known as the harmonic sequence.

The sequence is simply

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

This sequence is particularly interesting because its summation is *divergent*;

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

Progressions I

Sequences & Summations CSE235

Introduction

Sequences

Summations

Series

Definition

A geometric progression is a sequence of the form

$$a, ar, ar^2, ar^3, \ldots, ar^n, \ldots$$

Where $a \in \mathbb{R}$ is called the *initial term* and $r \in \mathbb{R}$ is the *common ratio*.

A geometric progression is a $\ensuremath{\textit{discrete}}$ analogue of the exponential function

$$f(x) = ar^x$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Progressions II

Sequences & Summations CSE235

Introduction

Sequences

Summations

Series

Definition

An arithmetic progression is a sequence of the form

$$a, a+d, a+2d, a+3d, \ldots, a+nd, \ldots$$

Where $a \in \mathbb{R}$ is called the *initial term* and $r \in \mathbb{R}$ is the *common difference*.

Again, an arithmetic progression is a discrete analogue of the linear function,

$$f(x) = dx + a$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Nebraska Lincoln	Progressions III
Sequences & Summations CSE235 Introduction Sequences Summations Series	Example A common geometric progression in computer science is $\{a_n\}=\frac{1}{2^n}$ Here, $a=1$ and $r=\frac{1}{2}$
	Table 1 on Page 153 (Rosen) has useful sequences.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□▶

Summations I

Sequences & Summations CSE235

Introduction Sequences

Summations

Series

You should be very familiar with Summation notation:

$$\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \dots + a_{n-1} + a_n$$

Here, j is the index of summation, m is the lower limit, and n is the upper limit.

Often times, it is useful to change the lower/upper limits; which can be done in a straightforward manner (though we must be careful).

$$\sum_{j=1}^{n} a_j = \sum_{j=0}^{n-1} a_{j+1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

10/15

Summations II

Sequences & Summations CSE235

Introduction

Sequences

Summations

Series

Sometimes we can express a summation in *closed form*. Geometric series, for example:

Theorem

For $a,r\in\mathbb{R},r\neq0$,

$$\sum_{i=0}^{n} ar^{i} = \begin{cases} \frac{ar^{n+1}-a}{r-1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1 \end{cases}$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Summations III

Sequences & Summations CSE235

Introduction

Sequences

Summations

Series

Double summations often arise when analyzing an algorithm.

$$\sum_{i=1}^{n} \sum_{j=1}^{i} a_{j} = a_{1} + a_{1} + a_{2} + a_{1} + a_{2} + a_{3} + \dots + a_{n}$$

Summations can also be indexed over *elements in a set*.

 $\sum_{s \in S} f(s)$

3

Table 2 on Page 157 (Rosen) has useful summations.

Series

Sequences & Summations CSE235

Introduction

Sequences

Summations

Series

When we take the sum of a sequence, we get a *series*. We've already seen a closed form for geometric series.

Some other useful closed forms include the following.

 $\sum_{i=1}^{l} 1 = u - l + 1, \text{ for } l \leq u$ $\sum_{i=0}^n i = \frac{n(n+1)}{2}$ $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ $\sum_{k=0}^{k} i^k \approx \frac{1}{k+1} n^{k+1}$

Infinite Series I

Sequences & Summations CSE235

Introduction

Sequences

Summations

Series

Though we will mostly deal with finite series (i.e. an upper limit of n for a fixed integer), *infinite series* are also useful.

Example

Consider the geometric series

$$\sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \cdots$$

This series converges to 2. However, the geometric series

$$\sum_{n=0}^{\infty} 2^n = 1 + 2 + 4 + 8 + \cdots$$

イロト イポト イヨト イヨト

3

does not converge. However, note that $\sum_{n=0}^{n} 2^n = 2^{n+1} - 1$

Nebraska Lincoln	Infinite Series II
Sequences & Summations	
CSE235	
Introduction	
Sequences	In fact, we can generalize this as follows.
Summations	
Series	Lemma
	A geometric series converges if and only if the absolute value of
	the common ratio is less than 1.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ▲□▶