Notes Sequences & Summations Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Fall 2007 Computer Science & Engineering 235 Introduction to Discrete Mathematics Section 2.4 of Rosen cse235@cse.unl.edu Sequences & Summations Notes Though you should be (at least intuitively) familiar with sequences and summations, we give a quick review. Sequences Notes Definition A sequence is a function from a subset of integers to a set S. We use the notation(s): $\{a_n\}$ $\{a_n\}_n^{\infty}$ $\{a_n\}_{n=0}^{\infty}$ $\{a_n\}_{n=0}^{\infty}$ Each a_n is called the n-th $\it term$ of the sequence. We rely on context to distinguish between a sequence and a set; though there is a connection.

Sequences

Example

Example

Consider the sequence

$$\left\{ \left(1 + \frac{1}{n}\right)^n \right\}_{n=1}^{\infty}$$

The terms are

$$\begin{array}{rclcrcl} a_1 & = & (1+1)^1 & = & 2.00000 \\ a_2 & = & (1+\frac{1}{2})^2 & = & 2.25000 \\ a_3 & = & (1+\frac{1}{3})^3 & = & 2.37037 \\ a_4 & = & (1+\frac{1}{4})^4 & = & 2.44140 \\ a_5 & = & (1+\frac{1}{5})^5 & = & 2.48832 \end{array}$$

What is this sequence?

Not	tes		

Sequences

Example

The sequence corresponds to \emph{e} :

$$\lim_{n\to\infty}\left\{\left(1+\frac{1}{n}\right)^n\right\}=e=2.71828\ldots$$

Notes				
-	-			

Sequences

Example II

Example

The sequence

$$\{h_n\}_{n=1}^{\infty} = \frac{1}{n}$$

is known as the harmonic sequence.

The sequence is simply

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

This sequence is particularly interesting because its summation is $\it divergent;$

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

Notes							

Progressions I

Definition

A geometric progression is a sequence of the form

$$a, ar, ar^2, ar^3, \dots, ar^n, \dots$$

Where $a\in\mathbb{R}$ is called the $\it initial\ term$ and $r\in\mathbb{R}$ is the $\it common$ ratio

A geometric progression is a $\ensuremath{\textit{discrete}}$ analogue of the exponential function

$$f(x) = ar^x$$

Progressions II

Definition

An arithmetic progression is a sequence of the form

$$a, a+d, a+2d, a+3d, \ldots, a+nd, \ldots$$

Where $a \in \mathbb{R}$ is called the *initial term* and $r \in \mathbb{R}$ is the *common difference*

Again, an arithmetic progression is a discrete analogue of the linear function,

$$f(x) = dx + a$$

Progressions III

Example

A common geometric progression in computer science is

$$\{a_n\} = \frac{1}{2^n}$$

Here, a=1 and $r=\frac{1}{2}$

Table 1 on Page 153 (Rosen) has useful sequences.

Not	es	

Not	tes			

Not	5	
		-
		-
		-
		-
		-
		-

Summations I

You should be very familiar with Summation notation:

$$\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \dots + a_{n-1} + a_n$$

Here, j is the index of $\mathit{summation}, \ m$ is the $\mathit{lower limit}, \ \mathsf{and} \ n$ is the $\mathit{upper limit}.$

Often times, it is useful to change the lower/upper limits; which can be done in a straightforward manner (though we must be careful).

$$\sum_{j=1}^{n} a_j = \sum_{j=0}^{n-1} a_{j+1}$$

Sometimes we can express a summation in *closed form*. Geometric series, for example:

Summations II

Theorem

For $a, r \in \mathbb{R}, r \neq 0$,

$$\sum_{i=0}^{n} ar^{i} = \begin{cases} \frac{ar^{n+1} - a}{r-1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1 \end{cases}$$

Summations III

Double summations often arise when analyzing an algorithm.

$$\sum_{i=1}^{n} \sum_{j=1}^{i} a_{j} = a_{1} + a_{1} + a_{2} + a_{1} + a_{2} + a_{3} + \dots$$

$$a_{1} + a_{2} + a_{3} + \dots + a_{n}$$

Summations can also be indexed over elements in a set.

$$\sum_{s \in S} f(s)$$

Table 2 on Page 157 (Rosen) has useful summations.

Not	s	

Not	25	

No	tes				
					_
					_
					_
					_
					_
					_

Series

When we take the sum of a sequence, we get a *series*. We've already seen a closed form for geometric series.

Some other useful closed forms include the following.

$$\begin{split} \sum_{i=l}^{u} 1 &= u - l + 1, \text{ for } l \leq u \\ \sum_{i=0}^{n} i &= \frac{n(n+1)}{2} \\ \sum_{i=0}^{n} i^2 &= \frac{n(n+1)(2n+1)}{6} \\ \sum_{i=0}^{n} i^k &\approx \frac{1}{k+1} n^{k+1} \end{split}$$

i	· ·	4.0		
ı	ntın	ute	Se	ries

Though we will mostly deal with finite series (i.e. an upper limit of n for a fixed integer), *infinite series* are also useful.

Example

Infinite Series II

Consider the geometric series

$$\sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \cdots$$

This series converges to 2. However, the geometric series

$$\sum_{n=0}^{\infty} 2^n = 1 + 2 + 4 + 8 + \cdots$$

does not converge. However, note that $\sum_{n=0}^n 2^n = 2^{n+1} - 1$

In fact, we can generalize this as follows.

Lemma

Notes			

Not	es	

Not	tes		
			_

Infinite Series III		Notes
A geometric series converges if and only if the absolute value of the common ratio is less than 1.		