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Introduction

Recall that a relation between elements of two sets is a subset of
their Cartesian product (of ordered pairs).

Definition

A binary relation from a set A to a set B is a subset

R ⊆ A×B = {(a, b) | a ∈ A, b ∈ B}

Note the difference between a relation and a function: in a
relation, each a ∈ A can map to multiple elements in B. Thus,
relations are generalizations of functions.

If an ordered pair (a, b) ∈ R then we say that a is related to b. We
may also use the notation aRb and aR 6 b.

Relations

To represent a relation, you can enumerate every element in R.

Example

Let A = {a1, a2, a3, a4, a5} and B = {b1, b2, b3} let R be a
relation from A to B as follows:

R = {(a1, b1), (a1, b2), (a1, b3), (a2, b1),
(a3, b1), (a3, b2), (a3, b3), (a5, b1)}

You can also represent this relation graphically.

Relations
Graphical View
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Figure: Graphical Representation of a Relation

Relations
On a Set

Definition

A relation on the set A is a relation from A to A. I.e. a subset of
A×A.

Example

The following are binary relations on N:

R1 = {(a, b) | a ≤ b}

R2 = {(a, b) | a, b ∈ N,
a

b
∈ Z}

R3 = {(a, b) | a, b ∈ N, a− b = 2}

Exercise: Give some examples of ordered pairs (a, b) ∈ N2 that
are not in each of these relations.

Reflexivity
Definition

There are several properties of relations that we will look at. If the
ordered pairs (a, a) appear in a relation on a set A for every a ∈ A
then it is called reflexive.

Definition

A relation R on a set A is called reflexive if

∀a ∈ A
(
(a, a) ∈ R

)



Reflexivity
Example

Example

Recall the following relations; which is reflexive?

R1 = {(a, b) | a ≤ b}
R2 = {(a, b) | a, b ∈ N, a

b ∈ Z}
R3 = {(a, b) | a, b ∈ N, a− b = 2}

I R1 is reflexive since for every a ∈ N, a ≤ a.

I R2 is also reflexive since a
a = 1 is an integer.

I R3 is not reflexive since a− a = 0 for every a ∈ N.

Symmetry I
Definition

Definition

A relation R on a set A is called symmetric if

(b, a) ∈ R ⇐⇒ (a, b) ∈ R

for all a, b ∈ A.

A relation R on a set A is called antisymmetric if

∀a, b,

[(
(a, b) ∈ R ∧ (b, a) ∈ R

)
→ a = b

]
for all a, b ∈ A.

Symmetry II
Definition

Some things to note:

I A symmetric relationship is one in which if a is related to b
then b must be related to a.

I An antisymmetric relationship is similar, but such relations
hold only when a = b.

I An antisymmetric relationship is not a reflexive relationship.

I A relation can be both symmetric and antisymmetric or
neither or have one property but not the other!

I A relation that is not symmetric is not necessarily asymmetric.

Symmetric Relations
Example

Example

Let R = {(x, y) ∈ R2 | x2 + y2 = 1}. Is R reflexive? Symmetric?
Antisymmetric?

I It is clearly not reflexive since for example (2, 2) 6∈ R.

I It is symmetric since x2 + y2 = y2 + x2 (i.e. addition is
commutative).

I It is not antisymmetric since (1
3 ,

√
8

3 ) ∈ R and (
√

8
3 , 1

3) ∈ R

but 1
3 6=

√
8

3

Transitivity
Definition

Definition

A relation R on a set A is called transitive if whenever (a, b) ∈ R
and (b, c) ∈ R then (a, c) ∈ R for all a, b, c ∈ R. Equivalently,

∀a, b, c ∈ A
(
(aRb ∧ bRc) → aRc

)

Transitivity
Examples

Example

Is the relation R = {(x, y) ∈ R2 | x ≤ y} transitive?

Yes it is transitive since (x ≤ y) ∧ (y ≤ z) ⇒ x ≤ z.

Example

Is the relation R = {(a, b), (b, a), (a, a)} transitive?

No since bRa and aRb but bR 6 b.



Transitivity
Examples

Example

Is the relation

{(a, b) | a is an ancestor of b}

transitive?

Yes, if a is an ancestor of b and b is an ancestor of c then a is also
an ancestor of c (who is the youngest here?).

Example

Is the relation {(x, y) ∈ R2 | x2 ≥ y} transitive?

No. For example, (2, 4) ∈ R and (4, 10) ∈ R (i.e. 22 ≥ 4 and
42 = 16 ≥ 10) but 22 < 10 thus (2, 10) 6∈ R.

Other Properties

Definition

I A relation is irreflexive if

∀a
[
(a, a) 6∈ R

]
I A relation is asymmetric if

∀a, b
[
(a, b) ∈ R → (b, a) 6∈ R

]
Lemma

A relation R on a set A is asymmetric if and only if

I R is irreflexive and

I R is antisymmetric.

Combining Relations

Relations are simply sets, that is subsets of ordered pairs of the
Cartesian product of a set.

It therefore makes sense to use the usual set operations,
intersection ∩, union ∪ and set difference A \B to combine
relations to create new relations.

Sometimes combining relations endows them with the properties
previously discussed. For example, two relations may not be
transitive alone, but their union may be.

Combining Relations

Example

Let

A = {1, 2, 3, 4}
B = {1, 2, 3, 4}

R1 = {(1, 2), (1, 3), (1, 4), (2, 2), (3, 4), (4, 1), (4, 2)}
R2 = {(1, 1), (1, 2), (1, 3), (2, 3)}

Then

I R1 ∪R2 =
{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (3, 4), (4, 1), (4, 2)}

I R1 ∩R2 = {(1, 2), (1, 3)}
I R1 \R2 = {(1, 4), (2, 2), (3, 4), (4, 1), (4, 2)}
I R2 \R1 = {(1, 1), (2, 3)}

Definition

Let R1 be a relation from the set A to B and R2 be a relation
from B to C. I.e. R1 ⊆ A×B,R2 ⊆ B × C. The composite of
R1 and R2 is the relation consisting of ordered pairs (a, c) where
a ∈ A, c ∈ C and for which there exists and element b ∈ B such
that (a, b) ∈ R1 and (b, c) ∈ R2. We denote the composite of R1

and R2 by
R1 ◦R2

Powers of Relations

Using this composite way of combining relations (similar to
function composition) allows us to recursively define powers of a
relation R.

Definition

Let R be a relation on A. The powers, Rn, n = 1, 2, 3, . . ., are
defined recursively by

R1 = R
Rn+1 = Rn ◦R



Powers of Relations
Example

Consider R = {(1, 1), (2, 1), (3, 2), (4, 3)}

R2=

R3:

R4:

Notice that Rn = R3 for n=4, 5, 6, . . .

Powers of Relations

The powers of relations give us a nice characterization of
transitivity.

Theorem

A relation R is transitive if and only if Rn ⊆ R for n = 1, 2, 3, . . ..

Representing Relations

We have seen ways of graphically representing a function/relation
between two (different) sets—specifically a graph with arrows
between nodes that are related.

We will look at two alternative ways of representing relations; 0-1
matrices and directed graphs.

0-1 Matrices I

A 0-1 matrix is a matrix whose entries are either 0 or 1.

Let R be a relation from A = {a1, a2, . . . , an} to
B = {b1, b2, . . . , bm}.

Note that we have induced an ordering on the elements in each
set. Though this ordering is arbitrary, it is important to be
consistent; that is, once we fix an ordering, we stick with it.

In the case that A = B, R is a relation on A, and we choose the
same ordering.

0-1 Matrices II

The relation R can therefore be represented by a (n×m) sized 0-1
matrix MR = [mi,j ] as follows.

mi,j =
{

1 if (ai, bj) ∈ R
0 if (ai, bj) 6∈ R

Intuitively, the (i, j)-th entry is 1 if and only if ai ∈ A is related to
bj ∈ B.

0-1 Matrices III

An important note: the choice of row or column-major form is
important. The (i, j)-th entry refers to the i-th row and j-th
column. The size, (n×m) refers to the fact that MR has n rows
and m columns.

Though the choice is arbitrary, switching between row-major and
column-major is a bad idea, since for A 6= B, the Cartesian
products A×B and B ×A are not the same.

In matrix terms, the transpose, (MR)T does not give the same
relation. This point is moot for A = B.



0-1 Matrices IV

B︷ ︸︸ ︷
b1 b2 b3 b4

A


a1

a2

a3

a4


0 0 1 0
1 1 1 1
0 0 1 1
1 0 1 1


Let’s take a quick look at the example from before.

Matrix Representation
Example

Example

Let A = {a1, a2, a3, a4, a5} and B = {b1, b2, b3} let R be a
relation from A to B as follows:

R = {(a1, b1), (a1, b2), (a1, b3), (a2, b1),
(a3, b1), (a3, b2), (a3, b3), (a5, b1)}

What is MR?

Clearly, we have a (5× 3) sized matrix.

MR =


1 1 1
1 0 0
1 1 1
0 0 0
1 0 0



Matrix Representations
Useful Characteristics

A 0-1 matrix representation makes checking whether or not a
relation is reflexive, symmetric and antisymmetric very easy.

Reflexivity – For R to be reflexive, ∀a(a, a) ∈ R. By the definition
of the 0-1 matrix, R is reflexive if and only if mi,i = 1 for
i = 1, 2, . . . , n. Thus, one simply has to check the diagonal.

Matrix Representations
Useful Characteristics

Symmetry – R is symmetric if and only if for all pairs (a, b),
aRb ⇒ bRa. In our defined matrix, this is equivalent to
mi,j = mj,i for every pair i, j = 1, 2, . . . , n.

Alternatively, R is symmetric if and only if MR = (MR)T .

Antisymmetry – To check antisymmetry, you can use a
disjunction; that is R is antisymmetric if mi,j = 1 with i 6= j then
mj,i = 0. Thus, for all i, j = 1, 2, . . . , n, i 6= j,
(mi,j = 0) ∨ (mj,i = 0).

What is a simpler logical equivalence?

∀i, j = 1, 2, . . . , n; i 6= j
(
¬(mi,j ∧mj,i)

)

Matrix Representations
Example

Example

MR =

 1 1 0
0 0 1
1 0 1


Is R reflexive? Symmetric? Antisymmetric?

I Clearly it is not reflexive since m2,2 = 0.

I It is not symmetric either since m2,1 6= m1,2.

I It is, however, antisymmetric. You can verify this for yourself.

Matrix Representations
Combining Relations

Combining relations is also simple—union and intersection of
relations is nothing more than entry-wise boolean operations.

Union – An entry in the matrix of the union of two relations
R1 ∪R2 is 1 if and only if at least one of the corresponding entries
in R1 or R2 is one. Thus

MR1∪R2 = MR1 ∨MR2

Intersection – An entry in the matrix of the intersection of two
relations R1 ∩R2 is 1 if and only if both of the corresponding
entries in R1 and R2 is one. Thus

MR1∩R2 = MR1 ∧MR2

Count the number of operations



Matrix Representations
Combining Relations

Example

Let

MR1 =

 1 0 1
0 1 1
1 1 0

 ,MR2 =

 0 0 0
1 1 1
0 1 1


What is MR1∪R2 and MR1∩R2

MR1∪R2 =

 1 0 1
1 1 1
1 1 1

 ,MR1∩R2 =

 0 0 0
0 1 1
0 1 0


How does combining the relations change their properties?

Matrix Representations
Composite Relations

One can also compose relations easily with 0-1 matrices. If you
have not seen matrix product before, you will need to read section
3.8.

MR1 =

 1 0 1
1 1 0
0 0 0

 ,MR2 =

 0 1 0
0 0 1
1 0 1



MR1 ◦MR1 = MR1 �MR2 =

 1 1 1
0 1 1
0 0 0


Latex notation: \circ, \odot.

Matrix Representations
Composite Relations

Remember that recursively composing a relation Rn, n = 1, 2, . . .
gives a nice characterization of transitivity.

Using these ideas, we can build that Warshall (a.k.a. Roy-Warshall)
algorithm for computing the transitive closure (discussed in the
next section).

Directed Graphs

We will get more into graphs later on, but we briefly introduce
them here since they can be used to represent relations.

In the general case, we have already seen directed graphs used to
represent relations. However, for relations on a set A, it makes
more sense to use a general graph rather than have two copies of
the set in the diagram.

Directed Graphs I

Definition

A graph consists of a set V of vertices (or nodes) together with a
set E of edges. We write G = (V,E).

A directed graph (or digraph) consists of a set V of vertices (or
nodes) together with a set E of edges of ordered pairs of elements
of V .

Directed Graphs II

Example



Directed Graphs III

Let A = {a1, a2, a3, a4} and let R be a relation on A defined as:

R = {(a1, a2), (a1, a3), (a1, a4), (a2, a3), (a2, a4)
(a3, a1), (a3, a4), (a4, a3), (a4, a4)}

a1 a2

a3 a4

Directed Graph Representation I
Usefulness

Again, a directed graph offers some insight as to the properties of
a relation.

Reflexivity – In a digraph, a relation is reflexive if and only if every
vertex has a self loop.

Symmetry – In a digraph, a represented relation is symmetric if
and only if for every edge from x to y there is also a corresponding
edge from y to x.

Directed Graph Representation II
Usefulness

Antisymmetry – A represented relation is antisymmetric if and
only if there is never a back edge for each directed edge between
distinct vertices.

Transitivity – A digraph is transitive if for every pair of edges
(x, y) and (y, z) there is also a directed edge (x, z) (though this
may be harder to verify in more complex graphs visually).

Closures
Definition

If a given relation R is not reflexive (or symmetric, antisymmetric,
transitive) can we transform it into a relation R′ that is?

Example

Let R = {(1, 2), (2, 1), (2, 2), (3, 1), (3, 3)} is not reflexive. How
can we make it reflexive?

In general, we would like to change the relation as little as
possible. To make this relation reflexive we simply have to add
(1, 1) to the set.

Inducing a property on a relation is called its closure. In the
example, R′ is the reflexive closure.

Closures I

In general, the reflexive closure of a relation R on A is R∪∆ where

∆ = {(a, a) | a ∈ A}

is the diagonal relation on A.

Question: How can we compute the reflexive closure using a 0-1
matrix representation? Digraph representation?

Similarly, we can create symmetric closures using the inverse of a
relation. That is, R ∪R−1 where

R−1 = {(b, a) | (a, b) ∈ R}

Question: How can we compute the symmetric closure using a 0-1
matrix representation? Digraph representation?

Closures II

Also, transitive closures can be made using a previous theorem:

Theorem

A relation R is transitive if and only if Rn ⊆ R for n = 1, 2, 3, . . ..

Thus, if we can compute Rk such that Rk ⊆ Rn for all n ≥ k,
then Rk is the transitive closure.

To see how to efficiently do this, we present Warhsall’s Algorithm.

Note: your book gives much greater details in terms of graphs and
connectivity relations. It is good to read these, but they are based
on material that we have not yet seen.



Warshall’s Algorithm I
Key Ideas

In any set A with |A| = n elements, any transitive relation will be
built from a sequence of relations that has a length at most n.
Why? Consider the case where A contains the relations

(a1, a2), (a2, a3), . . . , (an−1, an)

Then (a1, an) is required to be in A for A to be transitive.

Thus, by the previous theorem, it suffices to compute (at most)
Rn. Recall that Rk = R ◦Rk−1 is calculated using a Boolean
matrix product. This gives rise to a natural algorithm.

Warshall’s Algorithm

Warshall’s Algorithm

Input : An (n× n) 0-1 Matrix MR representing a relation R

Output : A (n× n) 0-1 Matrix W representing the transitive closure of
R

W = MR1

for k = 1, . . . , n do2
for i = 1, . . . , n do3

for j = 1, . . . , n do4
wi,j = wi,j ∨ (wi,k ∧ wk,j)5

end6

end7

end8

return W9

Warshall’s Algorithm
Example

Example

Compute the transitive closure of the relation

R = {(1, 1), (1, 2), (1, 4), (2, 2), (2, 3), (3, 1), (3, 4), (4, 1), (4, 4)}

on A = {1, 2, 3, 4}

Equivalence Relations

Consider the set of every person in the world. Now consider a
relation such that (a, b) ∈ R if a and b are siblings. Clearly, this
relation is:

I reflexive,

I symmetric, and

I transitive.

Such a unique relation is called and equivalence relation.

Definition

A relation on a set A is an equivalence relation if it is reflexive,
symmetric and transitive.

Equivalence Classes I

Though a relation on a set A may not be an equivalence relation,
we can define a subset of A such that R does become an
equivalence relation (for that subset).

Definition

Let R be an equivalence relation on the set A and let a ∈ A. The
set of all elements in A that are related to a is called the
equivalence class of a. We denote this set [a]R (we omit R when
there is no ambiguity as to the relation). That is,

[a]R = {s | (a, s) ∈ R, s ∈ A}

Equivalence Classes II

Elements in [a]R are called representatives of the equivalence class.

Theorem

Let R be an equivalence relation on a set A. The following are
equivalent:

1. aRb

2. [a] = [b]
3. [a] ∩ [b] 6= ∅

The proof in the book is a cicular proof.



Partitions I

Equivalence classes are important because they can partition a set
A into disjoint non-empty subsets A1, A2, . . . , Al where each
equivalence class is self-contained.

Note that a partition satisfies these properties:

I
⋃l

i=1 Ai = A

I Ai ∩Aj = ∅ for i 6= j

I Ai 6= ∅ for all i

Partitions II

For example, if R is a relation such that (a, b) ∈ R if a and b live
in the US and live in the same state, then R is an equivalence
relation that partitions the set of people who live in the US into 50
equivalence classes.

Theorem

Let R be an equivalence relation on a set S. Then the equivalence
classes of R form a partition of S. Conversely, given a partition Ai

of the set S, there is an equivalence relation R that has the sets
Ai as its equivalence classes.

Visual Interpretation

In a 0-1 matrix, if the elements are ordered into their equivalence
classes, equivalence classes/partitions form perfect squares of 1s
(and zeros else where).

In a digraph, equivalence classes form a collection of disjoint
complete graphs.

Example

Say that we have A = {1, 2, 3, 4, 5, 6, 7} and R is an equivalence
relation that partitions A into A1 = {1, 2}, A2 = {3, 4, 5, 6} and
A3 = {7}. What does the 0-1 matrix look like? Digraph?

Equivalence Relations
Example I

Example

Let R = {(a, b) | a, b ∈ R, a ≤ b}

I Reflexive?

I Transitive?

I Symmetric? No, it is not since, in particular 4 ≤ 5 but 5 6≤ 4.

I Thus, R is not an equivalence relation.

Equivalence Relations
Example II

Example

Let R = {{(a, b) | a, b ∈ Z, a = b}

I Reflexive?

I Transitive?

I Symmetric?

I What are the equivalence classes that partition Z?

Equivalence Relations
Example III

Example

For (x, y), (u, v) ∈ R2 define

R =
{(

(x, y), (u, v)
)
| x2 + y2 = u2 + v2

}
Show that R is an equivalence relation. What are the equivalence
classes it defines (i.e. what are the partitions of R?



Equivalence Relations
Example IV

Example

Given n, r ∈ N, define the set

nZ + r = {na + r | a ∈ Z}

I For n = 2, r = 0, 2Z represents the equivalence class of all
even integers.

I What n, r give the equivalence class of all odd integers?
I If we set n = 3, r = 0 we get the equivalence class of all

integers divisible by 3.
I If we set n = 3, r = 1 we get the equivalence class of all

integers divisible by 3 with a remainder of one.
I In general, this relation defines equivalence classes that are, in

fact, congruence classes. (see Section 3.4, to be covered
later).


